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Summary

Traffic safety engineers are among the early adopters of Bayesian statistical tools for
analyzing crash data. As in many other areas of application, empirical Bayes methods were
their first choice, perhaps because they represent an intuitively appealing, yet relatively
easy to implement alternative to purely classical approaches. With the enormous progress
in numerical methods made in recent years and with the availability of free, easy to use
software that permits implementing a fully Bayesian approach, however, there is now ample
justification to progress towards fully Bayesian analyses of crash data.

The fully Bayesian approach, in particular as implemented via multi-level hierarchical
models, has many advantages over the empirical Bayes approach. In a full Bayesian analysis,
prior information and all available data are seamlessly integrated into posterior distributions
on which practitioners can base their inferences. All uncertainties are thus accounted for in
the analyses and there is no need to pre-process data to obtain Safety Performance Functions
and other such prior estimates of the effect of covariates on the outcome of interest. In this
light, fully Bayesian methods may well be less costly to implement and may result in safety
estimates with more realistic standard errors.

In this manuscript, we present the full Bayesian approach to analyzing traffic safety data
and focus on highlighting the differences between the empirical Bayes and the full Bayes
approaches. We use an illustrative example to discuss a step-by-step Bayesian analysis of
the data and to show some of the types of inferences that are possible within the full Bayesian
framework.

1. Introduction

State Departments of Transportation and engineers engaged in research have been col-
lecting and analyzing traffic accident information for decades. Of particular interest to prac-
titioners and researchers alike are ranking of hazardous sites, evaluation of the effectiveness
of site improvements and prediction of the effect of potential modifications to a set of sites.
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In all of these cases, it is important to obtain a reliable estimate of the expected number of
crashes at a specific site or group of sites in order to compare with actual occurrences. Often
times, those estimates and the policy decisions that rely on them are based on relatively
scarce information about the site or group of sites, either because traffic volumes at those
particular locations are comparatively low, or because only a few years (or perhaps even a
single year) of crash data are available for the locations of interest.

When data at a particular location span only a few years, the naive statistical analysis
that relies on information from that site alone fails to capture the true (yet unobservable)
long-term behavior at that site. The estimated long-term crash rate obtained by averaging
observed crash rates over a few years can be unduly influenced by a single year with an
unusually high (or low) number of crashes. A similar bias is introduced when crash rates are
estimated for sites with very low traffic volumes, where a small number of crashes can result
in a very high estimated crash rate at the site if rate is estimated using only information
from that site. This is known as the regression to the mean effect and has been discussed
extensively in the literature (e.g., Hauer, 1986; Hauer et al., 1986; Persaud, 1988).

In recent years, interest in the Bayesian approach to data analysis has increased signif-
icantly in many areas of application, including traffic safety. Perhaps the most influential
first step towards the application of Bayesian methods in traffic safety is the work by Hauer
and colleagues (Hauer, 1986; Hauer et al., 1986; Persaud, 1988; Hauer, 1996a; Hauer, 1996b;
Harwood et al., 2002; Hauer et al., 2002; Higle et al., 1988; Higle et al., 1989; HSIS, 2001;
Pendleton, 1991; Pendleton et al., 1991; Persaud et al., 1997; Persaud et al., 1998; Per-
saud et al., 2002a; Persaud et al., 2002b)), who have been instrumental proponents of the
empirical Bayes (EB) approach to analyzing crash data. These researchers have eloquently
and effectively argued in favor of EB methods, by pointing out the advantages of the EB
approach over the classical approach to statistical analysis. In particular, the manuscript
entitled Estimating Safety by the Empirical Bayes Method: A Tutorial (2002a) has provided
an accessible step-by-step description of the EB approach to statistical analysis in various
situations of interest to traffic safety engineers and as a consequence, the EB approach is
now widely accepted in the field.

While demonstrably better suited to this type of application than naive statistical meth-
ods, the EB approach suffers several serious drawbacks. Perhaps most unfortunate among
those is the need to spend time, resources and effort on the estimation of what are known
as Safety Performance Functions (SPFs) required for implementation of the EB method.
We argue later in this work that it is possible to improve on the prediction of the expected
number of crashes at a site while at the same time avoiding the need to obtain estimates
of SPFs and other quantities such as Accident Modification Factors (AMFs). Indeed, as
will become clear in later sections, the need to use estimated SPFs and AMFs is one of the
critical components of the EB approach to analyzing crash data. Except in very exceptional
situations, the need to estimate the SPFs is also one of its largest limitations.

In this manuscript, we attempt to provide an accessible discussion of what we will call
fully Bayesian (FB) methods for analyzing traffic safety data. Fully Bayesian methods are not
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new to traffic safety engineering; several authors have proposed FB methods for estimating
crash rates (Davis and Gao, 1993; Davis and Guan, 1996; Davis, 2000; Davis and Yang,
2001; Pawlovich, 2003), for ranking sites (Schluter et al., 1997; Pawlovich, 2003) and for
identifying black spots in road segments (Saccomanno et al., 2001; Flahaut et al., 2004).

We focus here on the comparison of FB with EB and in particular on their differences
and comparative advantages. We argue that FB approaches present significant advantages
over EB methods, both in terms of the inferences that are possible (output) and also in terms
of the information that is required to implement either approach (input). EB is a special
case of FB that arises when an FB analysis is simplified by making certain assumptions.
For example, an FB model can be reduced to an EB model if the investigator is willing to
assume that the effect of covariates such as control signals and shoulder width on number
of crashes is known without any uncertainty and can be represented via an SPF or an
AMF. But associations between covariates and safety are typically estimated from crash data
and thus are subject to uncertainty. This uncertainty is more fully accounted by the FB
approach than by the EB approach so sometimes EB results can be unrealistically optimistic
relative to FB results. In an FB approach, as will be argued later in this manuscript, it
is unnecessary to carry out any out-of-sample estimation, since information available for
all relevant sites is combined into a single analysis; that is, pre-processing some of the
information into estimating equations such as SPFs is not a necessary step and in fact so
doing can limit the type of inference that is possible.

The rest of the manuscript is organized as follows. In Section 2, we introduce a motivat-
ing example using simulated data and describe the steps that would be needed in order to
implement an EB and an FB analysis of the data. In Section 3 we describe more precisely
the differences between the EB and the FB approaches and focus on the advantages and
disadvantages of each approach. Finally, we draw some conclusions and provide recommen-
dations in Section 4. Two appendices are included in the manuscript. Appendix A is a
technical appendix, with the formal statistical formulation for the approaches addressed in
the manuscript. In Appendix B, we discuss computational resources available to implement
an FB analysis of traffic safety data.

2. A hypothetical example

Engineers at the Department of Transportation in some state have assembled two years
of crash data on a set of 20 intersections in an urban area. In addition to the number of
crashes per intersection per year, engineers have also collected data on daily entering vehicles
(DEV) at the intersections as well as on the presence of traffic control signals (controls or
no controls). The questions of interest might be the following:

• How many crashes can be expected per 1,000 DEV at the intersection labeled 1?

• Which are the two intersections with highest crash rates among those without traffic
controls and among those with traffic controls?

• Other factors being equal, are intersection controls associated to lower crash rates?
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ID Controls DEV1 DEV2 y1 y2

1 0 5766 5581 10 2
2 0 4307 4743 8 6
3 0 2623 1941 6 2
4 0 4240 4835 2 5
5 0 4844 4625 2 9
6 0 3178 2422 0 2
7 0 5162 5315 6 5
8 0 5420 5250 7 3
9 0 5392 4876 2 4
10 0 2987 3169 3 6
11 1 5726 4581 6 0
12 1 4207 4844 4 2
13 1 2520 1981 1 0
14 1 4270 4235 1 4
15 1 3844 3625 2 3
16 1 4178 4422 0 2
17 1 4160 4355 2 2
18 1 6420 5850 4 1
19 1 6390 5856 4 3
20 1 2980 3148 2 1

Table 1: Number of crashes (y) and DEV in each of two years.

The crash data for the 20 intersections over the two years are given in Table 1. In the
table, we also give an indicator for traffic controls. Note that intersection 1, for which we
wish to obtain an estimate of expected number of crashes, is one of 10 intersections in the
study area with no traffic control signals.

We use yij to denote the number of crashes at the ith intersection in the jth year and use
θi to denote the expected number of crashes for the ith intersection. Note that the number
of crashes can be calculated as the product of crash rate (e.g., number of crashes per 1,000
DEV) times the DEV (in thousands) at the intersection. Thus, θi = λi × DEVi, where
λi is the crash rate at the ith intersection. In the hypothetical example introduced above,
i = 1, ..., 20, and j = 1, 2.

How do we estimate the expected number of crashes at the intersection of interest?
The easiest (and most unreliable!) approach is to use only the two years of crash data

available for intersection 1. In this case, an estimate of the expected number of crashes per
1,000 DEV (or crash rate) is just

λ̂i =
yi1 × 1, 000/DEV1 + yi2 × 1, 000/DEV2

2
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For intersection 1 above, the estimate would be 1.05 crashes/1,000 DEV, with a coefficient
of variation of about 67%. Note that regardless of the distribution from which we sample
the yij, the mean λ̂i has an asymptotic normal distribution with variance equal to the year-
to-year variability in crashes (the within-intersection variance σ2

w) for the ith intersection
divided by the number of years of data available σ2

wi/2. If σ2
wi is large, that is, the number

of observed crashes at the site varies greatly from year to year, then the estimate of the
expected number of crashes will have low reliability (high variance).

An approach that under some conditions results in a more reliable estimate of λi is to
use the two years of data for the intersection of interest in combination with information
about similar intersections. In this case, the underlying assumption is that our intersection
is sampled from a population of similar intersections, with mean number of crashes µ. In
other words, the implicit model here is:

yij ∼ (θi, σ
2
w), θij = λi ×DEVij

λi ∼ (µ, σ2
b ),

where σ2
b denotes the intersection-to-intersection variability in crash numbers (the between-

intersection variance) when considering only groups of similar intersections. In such a model,
one can obtain the Best Linear Predictor (BLP) of θi, which is given by

λ̃i = µ + φ(λ̂i − µ).

for
φ =

σb√
σ2

b + σ2
w

n

,

where n is the number of years of data available for the intersection of interest. If we think
of φ as a weighting factor, then we can rewrite the expression above as

λ̃i = µ(1− φ) + λ̂iφ (1)

as in Hauer et al. (2002). That is, the estimated number of crashes at the ith intersection is
given by the weighted average of the information collected for that intersection and the mean
number of crashes at intersections just like the one that interests us. Note that as the number
of data points n available for the ith intersection increases, the within-intersection variance
component decreases and as a consequence, φ increases. Thus, when there is abundant
information available for the intersection of interest, the estimator of its expected number of
crashes is based almost exclusively on the data available for that intersection (see expression
(1)). In contrast, as σ2

w/n increases, φ decreases and then λ̃i tends to µ. This is intuitively
appealing; as more data for the intersection of interest becomes available, we rely less and
less on information about ‘similar’ interesections. The estimator above is called Best because
it has smallest mean squared error among all linear estimators.

Assume for a moment that we let intersections 2 - 10 in Table 1 (all with no traffic
controls) represent the ”‘similar”’ cohort of intersection 1 that is of interest. How do we
obtain the estimate λ̃1 for intersection 1? If the 10 intersections without controls in Table
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1 had identical DEV, we could estimate µ simply as the mean (over intersections and over
years) number of crashes per 1,000 DEV. Similarly, σ2

b is estimated as the variance of the
intersection means and σ2

w is estimated as the average (over the nine intersections) of the
year to year variance in number of crashes at each intersection. Using the hypothetical data
given in Table 1, we obtain µ̂ = 1.07 crashes per 1,000 DEV, σ2

b = 0.19 and σ2
w = 0.38.

The weighting factor φ is then estimated to be 0.69. Ignoring differences in DEV across
intersections 1 and its cohort, the BLP of λ1 is

λ̃1 = 1.07(1− 0.69) + 1.04× 0.69 = 1.05 crashes per 1,000 DEV. (2)

In the example, the average variance within intersections divided into the two years
available for each intersection is about the same as the variability across intersections and
thus the weighted average estimator is close to the mean of the two years of crash data
for intersection 1. In other words, the nine additional intersections in the similar cohort
do not contribute much additional information over what is contributed by intersection 1
itself. Typically, µ will be estimated from a larger cohort and thus the intersection mean will
be shrunken more noticeably towards the cohort mean when scarce information about the
intersection of interest is available. The estimator in (1), computed as a weighted average,
has been called an abridged EB estimator (Hauer et al., 2002a). A full EB approach can also
be implemented and will be discussed in the next section.

Essentially, implementing the EB method requires two steps. First, engineers identify a
set of intersections that can be considered to be similar enough to the intersection of interest,
and from data available for those intersections, estimate µ. In the example above, µ was
computed just as a mean, but in real applications engineers estimate an SPF. The SPF is
then used to estimate the expected number of crashes at intersections just like the one of
interest. In the example above, the SPF might be a very simple regression function (linear
or nonlinear) such as:

log(µ) = α0 + α1 × log(DEV ), (3)

which can also be written as
µ = exp(α0)×DEV α1 (4)

as in Hauer et al. (2002a). The values of the parameters (α0, α1) are estimated by fitting
the linear regression model in (3) to data collected at the similar intersections. For example,
using the two years of data available on the nine intersections that are similar to intersection
1 we obtain α̂0 = −2.7381 and α̂1 = 0.497. Thus, the SPF that might be used to calculate
the expected mean number of crashes at intersections just like 1 is

µ = exp(−2.739)DEV 0.497. (5)

In a year in which intersection 1 experiences volume equal to about 5,600 DEV, we estimate
that the expected number of crashes is about 0.9 crashes per 1,000 DEV.

One challenge in applying expression (1) for estimating λi is that the ’population’ pa-
rameter µ is also unknown (we assume for now that the within and between-intersection
variances are known). In order to compute the estimator in (1) we need to either introduce
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an external (to the analysis at hand) estimator for µ (such as that resulting from an SPF
calculation) or else must estimate µ together with the expected number of crashes at the
intersection of interest.

It is at this juncture where the EB and FB approaches differ. An analyst implementing
an EB approach would obtain a point estimate for µ which we denote µ̂ and would estimate
λi as in (1) (e.g., Hauer et al., 2002a). Once the point estimate µ̂ is obtained, the EB analyst
proceeds as if the estimate represents the true value of µ, with no uncertainty remaining. In
contrast, an analyst implementing a FB approach would account for the uncertainty about
the true value of µ by estimating a distribution of likely values of µ and then averaging the
possible values of λi relative to that distribution. We explain this further in the following
section.

In the next section, we briefly describe the fundamentals of the FB approach and show
that the estimator in (1), an example of an EB estimator when a point estimate µ̂ is used
in place of the unknown µ, arises from an FB analysis when certain simplifying assumptions
are made.

3. The Bayesian paradigm

Before proceeding, it is useful to present the fundamental ideas behind the Bayesian
approach to statistical analysis. All of the concepts presented in this section apply equally
to the EB and the FB approaches. In fact, as a preview of coming attractions, we state that
the major difference between EB and FB will be in the treatment of the prior parameters µ
of Section 2 or α and β mentioned later in this section. Please read on.

As before, let yi denote an observation, and suppose that the observation is drawn from
some distribution (perhaps a Poisson distribution or a Normal distribution, or some other
probabilistic distribution) with likelihood function l(y|θ), where θ is a parameter or vector
of parameters indexing the function. For example, if the y are normally distributed, then
θ = (µ, σ2) (the mean and the variance), whereas if y ∼ Poisson then θ represents the usual
rate parameter.

Classical statistical inferences are based on the likelihood function. For example, the
maximum likelihood estimator (MLE) of θ is the value θ̂ in the parameter space that maxi-
mizes the likelihood function. In the classical approach, parameters are fixed quantities and
the emphasis is on obtaining point estimators for θ and standard errors for θ̂.

A Bayesian model has an additional component: a prior distribution that summarizes any
knowledge about θ that might be available before observing any data. In the case of traffic
safety, when the parameter of interest is the expected number of crashes at an intersection,
we might have information to indicate that at certain types of intersections (e.g., those
without controls and with high DEV) we can expect more crashes than at others. We use
p(θ) to denote the prior distribution of θ and note that the prior will depend on its own
parameters, which we denote µ. In the Bayesian approach, inferences about θ are based on
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the posterior distribution p(θ|y) of θ, obtained by combining the likelihood with the prior
via Bayes’ rule:

p(θ|y) =
p(θ)l(y|θ)

C
, (6)

where C is just a normalizing constant that does not depend on θ. A possible point estimator
for θ is the mean of the posterior distribution E(θ|y). In the Bayesian context, however,
emphasis is not placed on point estimators but on summaries of various kinds of the posterior
distribution of the parameter.

An example of interest to traffic engineers is one where data are counts distributed as
Poisson variables, a situation similar to the hypothetical example described in Section 2. As
in the preceding section, we might wish to estimate the expected number of crashes at an
intersection. A reasonable probabilistic model might be the following:

y ∼ Poisson (λe), the likelihood function

λ ∼ Gamma (α, β), the prior distribution for λ.

Here, e denotes exposure. For example, if we are interested in number of crashes per 1,000
DEV, the exposure of an intersections with DEV equal to 2,000 is 2 and that corresponding
to an intersections with DEV = 500 is 0.5. Expressions for the Poisson and the Gamma
distributions are the following:

l(y|λ, e) ∝ Πiλ
(dȳi)
i exp{−λidēi}

p(λ|α, β) ∝ λα−1 exp{−βλ},

where the symbol ‘∝’ stands for ‘is proportional to’ and ȳi is the observed mean crash count
for intersections i over d years. In our hypothetical example, d = 2.

It is useful to recall that the MLE of λi is just the observed mean crashes ȳi at the
intersection and that the mean of a Gamma random variable is given by α/β. The quantity
ȳ is the naive estimator of λi based only on the years of data available for the intersection of
interest. The prior mean α/β represents our ‘best guess’ for λi prior to observing any crash
data for the intersection. If we apply Bayes’ rule to derive the posterior distribution for λ
we obtain:

p(λ|y) ∝ l(y|e, λ)× p(λ|α, β)

∝ λ(dȳ) exp{−dēλ}λα−1 exp{−βλ}
∝ λ(dȳ)+α−1 exp{−(dē + β)λ}.

The posterior distribution p(λ|y) has the same general form as the prior distribution, so we
conclude that a posteriori (after observing data y), the expected number of crashes at the
intersection is distributed as a Gamma variable with parameters (α + dȳ, β + dē), and thus
can be estimated by the mean of the posterior distribution:

λ̃ =
α + dȳ

β + dē
. (7)
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Note that λ̃ is like a weighted average of ȳ and α/β, the sample and prior means, respectively.
In fact, it is easy to show that the Bayes estimator of λ will take on a value somewhere
between the sample mean and the prior mean, as would be intuitively expected. When
the number of years of data available for the ith intersection of interest increases, the prior
parameters in (7) get ‘swamped’ by the term depending on ȳ and as a consequence, λ̃ → ȳ.
At the other extreme, if no data were available for the intersection, then λ̃ = α/β, the prior
mean.

As we explain in the next section, the prior parameters (α, β) (or some function thereoff)
play the role of µ, the parameter estimated from the cohort of similar intersections in Section
2. Notice that in order to implement the Bayesian approach described above, in principle it
appears that we need to set values for the two parameters of the prior distribution (α, β).
To choose adequate values for these parameters, we might proceed as in Hauer et al. (2002a)
and others, and obtain values (α̂, β̂) perhaps by fitting a model to data of the general form of
(3). Thus, an EB approach (abridged or full, see below) is defined in general as the approach
in which the parameters of the prior distribution are estimated from existing data.

4. The EB and FB approaches to analyzing traffic safety data

We have already introduced the Poisson model for crash counts. In fact, the Poisson
model is a standard probability model for counts yij such as number of crashes. As is
well known, however, the Poisson is somewhat limiting in that the mean and the variance of
crash counts are modeled by a single parameter. Typically, crash data exhibit overdispersion
(variance is larger than the mean) and thus a more flexible Poisson formulation would include
an additional parameter to accommodate the extra variability observed in the sample. A
very natural way to formulate such a model is the following. Consider the following two-tier
model known as a Poisson-Gamma model already introduced in earlier sections:

yij ∼ Poisson(λieij)

λi ∼ Gamma(α, β). (8)

It can be shown (see Appendix A) that while the mean crash number continues to be equal
to the expected value (mean) of λi× e, the variance of crash numbers is now the sum of two
components, one that arises from the usual Poisson variability and another one that arises
from the second tier model imposed on λi. More formally,

E(y) = eE(λ)

V ar(y) = eE(λ) + e2V ar(λ).

It can further be shown that the probability distribution of crash numbers yij computed
from the two-tier model presented above is equal to the distribution of a negative binomial
(NB) random variable (see Appendix A). Thus, the popular NB model used in traffic safety
arises from the Poisson-Gamma model that was just introduced in (8).

Some recently published discussions on statistical modeling of crash data have proposed
extensions of the model above for the case of roadway segments. One such extension is pro-
posed for those cases in which the number of segments with crash counts equal to zero in the
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dataset exceeds the number that would be expected under the Poisson-Gamma model. The
general class of models is known as zero-inflated models, and consist essentially of mixtures
of Poisson processes with different intensities (e.g., Lee and Mannering, 2002; Shankar et al.,
2003; Qin et al., 2004). We do not discuss those models here, but note that except for the
added complexity that arises because of the need to estimate the mixing proportions, fitting
these zero-inflated models does not differ significantly from fitting regular Poisson-Gamma
models of the type addressed in this manuscript.

The Poisson-Gamma model above implies the following:

• Crash counts yij differ within intersections from year to year.

• Each intersection, at least as its characteristics do not change, has an expected crash
rate λi.

• The expected number of crashes is different for different intersections, even if their
characteristics are very similar.

• The expected number of crashes at similar intersections are thought of as draws from
a common population distribution with its own mean and variance. This is interpreted
as follows: the expected number of crashes at a group of similar intersections are
deviations from an overall mean expected crashes for intersections with those specific
characteristics.

The components of the model shown in (8) accommodate the four statements above as
follows. At the highest level of the hierarchy, we assume that the parameters (α, β) index the
distribution of the expected crash counts λi across intersections and determine the overall
expected number of crashes at intersections with a certain set of characteristics. Thus,
intersections that are similar in some relevant way differ in their expected crash counts but
are assumed to have a common overall mean (in other words, are assumed to be generated by
the same process). Each intersection with its own expected crash count will exhibit different
number of crashes from one year to the next.

In model (8) we have chosen a Gamma distribution to represent the variability of the
individual expected crash counts. If all intersections in our dataset are similar in relevant
ways (e.g., have the same geometry, signalization, DEV), then model (8) might well pro-
vide an adequate representation of the data. That is, since all intersections belong to the
same ‘class’, then an overall mean expected number of crashes can be conceptualized as
representing all intersections.

If, however, our study dataset consists of a set of sites with differences in characteristics
that are likely to affect the number of crashes at the site, then it is necessary to add more
structure to the model so as to account for the potential systematic effects of covariates such
as shoulder width and traffic controls on number of crashes. We now think of groups of
similar intersections, where the groups are defined by relevant intersection characteristics.
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Consider model (8) but with the following modification:

yij ∼ Poisson(λieij)

log(λi) = β0 + log(xi)
′β + ci, (9)

where now β0 is the intercept in an ordinary regression model (sometimes fixed at a value
called an offset), xi is a p-dimensional vector of covariates of safety associated to the ith
intersection, β is a p-dimensional vector of unknown regression coefficients, and ci is a random
effect associated to intersection i, that is assumed to have mean zero and some variance σ2

c .
Model (9) is similar to (8) except that at the second level, the implicit model for the expected
number of crashes is

log λi ∼ N(β0 + log(xi)
′β, σ2

c ). (10)

An equivalent representation of (10) is

λi = exp{β0 + log(xi)
′β + ci}

= exp{β0}Πp
k=1 exp{xβk

ik } exp{ci}. (11)

Note that the expression in (11) is similar to the SPF used for illustration in Hauer et al.
(2002a).

The regression coefficients β1, β2, ..., βp indicate the expected change in expected number
of crashes at the ith intersection when crash predictors xi1, ..., xip change. As an example,
suppose that the model includes only one predictor, DEV, expressed in the logarithmic scale,
where DEV is measured in total number of vehicles entering the intersection during a 24
hour period. Further, for illustration suppose that the regression coefficient associated to
log DEV is equal to 0.5, that the intercept β0 equals log 0.02 and that the intersection of
interest has an average of 4,000 entering vehicles during a day (these numbers are similar to
those used for illustration in Hauer et al. (2002a). Then:

log λ = log 0.02 + 0.5× log 4, 000

= 3.91 + 4.15

= 0.2349.

Therefore, given those values of β0, β1, an intersection with 4,000 daily entering vehicles can
expect to have about 1.3 crashes per 1,000 DEV.

The second tier in the hierarchical model shown in (10) depends on regression coefficients
β, that are typically unknown. In the EB approach the effect of factors such as DEV and
signalization on the expected number of crashes is estimated externally (to the study of
interest) using SPFs. The estimated regression coefficients β̂ that arise from fitting the
SPFs are then used to determine the expected number of crashes at intersections with certain
characteristics (e.g., certain values for the predictors x). Once those ‘class’ estimates are
obtained, they are in turn simply plugged into expressions similar to (1) in order to obtain an
estimate of the expected number of crashes for the intersection of interest. In other words, to
implement the full EB approach we would begin by formulating a two-tier model as before,
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and then we would plug in estimated values for the parameters of the second level in the
model, where these parameters were estimated from data external to the study.

How would we implement an FB analysis? The difference between EB and FB resides only
in the treatment of the hyperparameters (or the parameters of the second-level distributions).
While the EB practitioner estimates the parameters from auxiliary data, the FB practitioner
sets hyper-prior distributions on those parameters that depend themselves on a set of higher-
level parameters. Consider, for example, the model in (9) and suppose that a priori, we have
no information about the association between traffic controls, DEV and number of crashes.
Since the regression coefficients associated to the various covariates in principle can take
on any value on the real line, a reasonable choice for the hyperprior distribution of those
parameters is a normal, with some fixed mean value and a large variance.

We refer again to the hypothetical data that was presented in Table 1. There are 20
intersections in the dataset, 10 with no signal controls and 10 with controls. We wish to
estimate the expected mean number of crashes for some of the intersections (for example,
for intersection 1) and we might also be interested in assessing the effect of traffic controls
after controlling for differences in DEV across intersections. A possible model is

yij ∼ Poisson(θij)

θij = λi × eij

log(λi) = β1 signali + ci

ci ∼ Normal(0, σ2
b ).

Priors for high-level parameters (β1 and σ2
b ) need to be specified as well. Prior distri-

butions can be informative or non-informative. For example, if we knew that the effect of
traffic controls is to reduce the expected log crash rate by 0.3, we might consider choosing a
prior distribution for β1 that is centered at 0.3 and has some variance to reflect uncertainty
about that value. On the contrary, if we have no information about the effect of traffic
controls on crash rates prior to observing data, then we would choose a prior distribution
with any mean and a very large variance, reflecting the fact that a priori, we have no prefer-
ence for one value of β1 over others. In the case of a variance, the prior distribution would
be chosen from among the probability distributions with support on the positive real line.
This is because variances cannot take on negative values. A standard prior distribution for
a variance parameter is the Inverted Gamma (IG) distribution with parameters (δ, γ). The
hyperparameters (δ, γ) are typically fixed at some numerical value chosen by the investigator
to make the prior informative or uninformative, as appropriate in the specific application.

A full specification of the model is then the following:

yij ∼ Poisson(θij), θij = λi × eij

log(λi) = β1 signali + ci

ci ∼ Normal(0, σ2
b )

β1 ∼ Normal(m, τ 2)
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σ2
b ∼ Inv-Gamma(δ, γ) (12)

Inferences in the Bayesian framework are based on the posterior distributions of the
parameters in the model. In model (12) we can draw inferences about the following pa-
rameters: (λ1, ..., λn, β1, σ

2
b ) assuming that hyper-parameters (m, τ 2, δ, γ) are fixed at some

numeric values a priori. The joint posterior distribution of the model parameters is given by

p(λ1, ..., λn, β1, σ
2
b |y) ∝ Normal(m, τ 2) IG(δ, γ)Πi Poisson(λieij). (13)

In our example, if n = 20 is the number of intersections in the dataset, the dimensionality
of the posterior distribution is 22.

In principle it appears that working with a 22-dimensional probability distribution is
analytically intractable and very difficult. Recent computational developments (Markov
chain Monte Carlo methods, e.g., Gelfand and Smith, 1990; Casella and George, 1992; Gilks
et al., 1998; Carlin and Louis, 2000; Gelman et al., 2004) however, permit drawing values
of any parameter from its marginal posterior distribution in a very efficient manner. For
example, it is very simple to ‘draw’ 1,000 likely values of λ1 from its posterior distribution
and then use Monte Carlo methods to obtain estimates for quantities such as the posterior
mean, standard deviation and percentiles of λ1. Thus, not only do we obtain point estimators
for the parameters in the model, we also obtain the entire distribution of likely values for
the parameter which we can then choose to summarize in different ways. We illustrate the
implementation of these methods in the next section.

5. A FB analysis of the hypothetical data in Section 2

We now implement a FB analysis of the hypothetical data presented in Section 2. We fit
a model like (12) to the data shown in Table 1 and estimate

• The expected number of crashes at each of the intersections.

• The regression coefficient associated to traffic controls.

• The probability that each of the intersections within its traffic controls group is ranked
in the top three in terms of the expected number of crashes per 1,000 DEV.

We choose prior distributions that reflect ignorance about the values of the hyper-
parameters (β1, σ

2
b ). (It is also be possible to incorporate information in this step if in-

formation is available.) Prior distributions are:

β1 ∼ Normal(0, 1.0E06)

σ2
b ∼ Inverse Gamma(0.001, 0.001)

Note that the prior variances associated to (β1 and σ2
b ) are both very large. That means

that a priori, we do not consider any possible value of β1 or σ2
b to be more likely than others.

Note too that the prior distribution used for σ2
b has support only on the positive portion of

the real line, consistent with the fact that variances cannot take on negative values.
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Intersection Mean Std error 95% set
1 1.018 0.1466 (0.757 , 1.352)
2 1.116 0.1819 (0.8481 , 1.58)
3 1.097 0.1956 (0.8157, 1.064)
4 0.9862 0.1465 (0.6985, 1.304)
5 1.04 0.1574 (0.7736, 1.401)
6 0.9288 0.1513 (0.5993, 1.219)
7 1.016 0.1455 (0.7526, 1.356)
8 0.9929 0.1415 (0.7173, 1.306)
9 0.9238 0.1438 (0.6218, 1.203)
10 1.077 0.1786 (0.8035, 1.512)
11 0.51 0.1091 (0.324, 0.7559)
12 0.5154 0.1091 (0.334, 0.7611)
13 0.4826 0.1095 (0.2885, 0.7179)
14 0.5083 0.1102 (0.3226, 0.7558)
15 0.5129 0.1128 (0.3278, 0.7691)
16 0.4723 0.1028 (0.285, 0.6896)
17 0.4951 0.1064 (0.3116, 0.7298)
18 0.4859 0.1019 (0.3056, 0.7055)
19 0.5097 0.1048 (0.3324, 0.7421)
20 0.4966 0.1071 (0.3113, 0.7342)

Table 2: Posterior mean, standard deviation, and 95% credible set for crash rate λ.

We fitted the model above using WinBUGS (BUGS Project, 2003). The code used to
implement the example is given in Appendix B. Below we present and interpret some of
the results. The program produces draws from the posterior distribution of each of the
parameters in the model, and given those draws, Monte Carlo methods can then be used to
approximate quantities such as the posterior mean and the posterior standard deviation of
the parameter.

Consider for example, results presented in Table 2. Each row in the table represents one
of the 20 intersections. The column labeled Mean is a point estimate of the crash rate per
1,000 DEV, which we have denoted λ. The second column gives an estimate of the posterior
standard deviation of the crash rate per 1,000 DEV for each intersection, and the last column
presents a 95% credible set (similar to the classical confidence interval) for the crash rate per
1,000 DEV. For intersection 1, for example, we estimate the crash rate per 1,000 DEV to
be equal to 1.018 crashes per 1,000 DEV, with a standard deviation equal to 0.1466. With
95% probability, the crash rate per 1,000 DEV for intersection 1 is between 0.757 and 1.352.
The posterior distribution of crash rate (number of crashes per 1,000 DEV) for intersections
labeled 1 and 13 are shown in Figures 1 and 2, respectively.

14



F R E Q U E N C Y

0

1 0 0

2 0 0

3 0 0

4 0 0

l a m b d a 1  M I D P O I N T

0
.
6

0
.
7

0
.
8

0
.
9

1
.
0

1
.
1

1
.
2

1
.
3

1
.
4

1
.
5

1
.
6

1
.
7

1
.
8

1
.
9

2
.
0

2
.
1

Figure 1: Posterior distribution of the number of crashes per 1,000 DEV for intersection
labeled 1.
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Figure 2: Posterior distribution of the number of crashes per 1,000 DEV for intersection
labeled 13.
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To assess which of the intersections has a worst safety record, we might wish to compute
the probability that the crash rate at each intersection is the highest among similar intersec-
tions or perhaps can estimate the probability that each of the intersections is ranked in the
top three regarding the number of crashes per 1,000 DEV. For example, when we compute
those probabilities using the draws for each of the λ’s we find that intersection 1 has only a
9.5% probability of being the most dangerous among intersections without controls, and that
intersection 11 has an 11% probability of being the worst among intersections with traffic
controls. We estimated the probability that each of the intersections in the group lacking
traffic controls would rank in the top three in terms of crashes per 1,000 DEV and obtained
the following estimates for intersections labeled 1 through 10, respectively: 0.28, 0.53, 0.43,
0.25, 0.31, 0.12, 0.28, 0.23, 0.14 and 0.43. Based on these results, we might conclude that
intersections labeled 6 and 9 appear to have the lowest crash rates among intersections with
no traffic controls.

The posterior distribution of the regression coefficient associated to traffic controls can
also be estimated. For this example, the posterior mean of β1 was -0.7914 with a standard
deviation of 0.1619 and a 95% credible set of (−1.042,−0.416). Since the probability that
β1 ≥ 0 is negligibly small, we are quite confident that those intersections with some form
of traffic control have significantly lower crash rates per 1,000 DEV than those without any
controls. (As is the case with classical methods, however, cause-effect relations cannot be
inferred from mere associations, regardless of the strength of those associations.)

6. Conclusions

We have presented, within the context of an example, the steps that are needed to
implement a fully Bayesian (FB) approach for the statistical analyses of traffic safety data.
Some similarities and differences between the two approaches are listed below.

• Both EB and FB recognize that similar intersections are likely to have similar (but not
identical) expected number of crashes.

• A few years of information on an intersection would result in an unreliable estimate
of that intersection’s safety, so it is important to ‘borrow’ information from similar
intersections to complement the scarce data. Both EB and FB combine information
from all available exchangeable (or similar) intersections in order to better estimate
intersection-level quantities. The combined estimate typically takes on the form of a
weighted average, where the weights depend on the relative amount of information on
the intersection of interest.

• In the EB approach, the mean expected number of crashes for a group of intersections
with certain characteristics is estimated externally, using SPFs or similar statistical
models. The estimated parameters that result from fitting the SPFs are then used
as if they were true values. This implies that population-level estimates in the EB
approach do not contribute to the uncertainty in the estimate of safety for a spe-
cific intersection. Often, EB analysts obtain unrealistically low standard errors for
intersection-level estimates.
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• In the FB approach, information about similar intersections is also incorporated into
the estimate for a single intersection. In this case, however, it is explicitly recognized
that the population-level estimates of safety are also uncertain and thus contribute to
the variance of the intersection-level estimate λ.

While perhaps somewhat daunting at first sight, the FB approach is likely to be less
costly than EB and can be even easier to implement. In addition, it has the potential for
resulting in more reliable assessments. One important conclusion from the discussion above
is that the significant efforts that are expended in estimating SPFs for a wide array of possible
scenarios are not only not required but also not desirable in an FB approach to data analysis.
Regardless of the quality of the parameter estimates obtained in the context of fitting an
SPF, intersection-level estimates λ obtained via EB methods will in general appear to be
more precise than they really are. This is because the uncertainties in the estimates of the
parameters in SPFs are typically not accounted for in the estimator for λ. In the worst case,
intersection-level estimates might also be biased. Thus our arguing that in the long run, FB
methods may well prove to be, in addition, less costly as they do not require estimation of
SPFs and other model parameters for inputting into the analysis. A comparison of the exact
costs associated to one or the other approaches in the State of Iowa for example, would need
to be undertaken within a carefully designed experiment. Here we offer some general reasons
that appear to suggest that FB might well be cheaper than EB in most situations.

Implementing a FB approach requires no SPFs and this is one of the advantages of FB
over EB. On the down-side, however, practitioners must choose prior distributions for the
parameters in the model and ideally those ought to be based on information available about
those parameters prior to observing the data. While choosing prior distributions may appear
to be suspiciously similar to estimating SPFs, a FB estimate is typically more robust to poor
specifications of the prior (as long as data are reasonable abundant) than EB estimates are
to poorly estimated SPFs. In other words, as long as data on a reasonably large number
of intersections (or road segments) are available over a few years, FB estimates of expected
crash numbers or crash rates are often insensitive to different specifications of the prior.
Nonetheless, a serious FB analysis would always include an assessment of the sensitivity of
results to different prior specifications.
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Appendix A: Technical notes

The Negative Binomial model

An integer random variable y is distributed as a Negative Binomial (NB) variable with
shaper parameter α > 0 and inverse scale parameter β > 0 if its density function is

p(y) =

(
y + α− 1

α− 1

)(
β

β + 1

)α (
1

β + y

)y

.

The density p(y) is also the p.d.f. of the random variable Y , the number of failures in
a sequence of Bernoulli trials before the occurrence of α successes, where the probability of
success in each trial is equal to p. In the parametrization used here,

p =
β

β + 1

which leads to the more familiar representation of the NB density

p(y) =

(
y + α− 1

α− 1

)
pα(1− p)y.

Consider the Poisson-Gamma model described in an earlier section. For y denoting the
number of crashes and λ denoting crash rate, let

y|λ ∼ Poisson(λ)

λ|α, β ∼ Gamma(α, β).

The joint distribution of (y, λ) has p.d.f.

p(y, λ) = p(y|λ)p(λ)

=
1

y!
λy exp{−λ} βα

Γ(α)
λα−1 exp{−λβ}

=
1

y!

βα

Γ(α)
λy+α−1 exp{−λ(β + 1)}.

The marginal distribution of the number of crashes can be obtained by integrating the
joint distribution p(y|λ)p(λ) with respect to λ to obtain:

p(y) =
∫ ∞

0
p(y|λ)p(λ)dλ

=
1

y!

βα

Γ(α)

∫
λy+α−1 exp{−λ(β + 1)}dλ

=
1

y!

Γ(y + α)

Γ(α)

(
β

β + 1

)α (
1

β + y

)y

Notice that for (α, y) integer variables, the following is true

Γ(y + α) = (y + α− 1)!

Γ(α) = (α− 1)!,
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and therefore

1

y!

Γ(y + α)

Γ(α)
=

(y + α− 1)!

(α− 1)!y!

=

(
y + α− 1

α− 1.

)

We have demonstrated that the NB model can be viewed as arising from a mixture
of Poisson random variables where the mixing distribution reflects uncertainty about the
value of the Poisson rate. In the case of traffic safety applications, the NB model makes
perfect sense; it arises when crash counts (modeled as Poisson random variables) exhibit
extra-Poisson variability represented in the model through a distribution for the Poisson
rate λ.

Note that

E(y) = α

(
1− p

p

)
=

α

β
= E(λ)

Var(y) = α

(
1− p

p2

)
.

Note too that the variance of y is larger than its mean since p ∈ (0, 1) and that it can be
written as:

α

(
1− p

p2

)
=

α

β2
(β + 1)

=
α

β
+

α

β2

= E(λ) + Var(λ).
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Appendix B: Notes on computational issues

We used Markov chain Monte Carlo methods (MCMC) to draw samples from the posterior
distributions of interest. We implemented the calculations using WinBUGS, a software freely
available from http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml. The BUGS code used
to obtain the samples of the 20 λ’s and of the regression coefficient β1 is listed below. The
BUGS syntax is very similar to SPlus or R syntax.

We ran three independent Markov chains for each of the parameters in the model for
20,000 iterations. We monitored convergence using the Gelman-Rubin statistic

√
R (Gelman

et al., 2004) and also using visual approaches such as observing trace plots. We thinned the
chains using a factor of 10 and discarded the first 10,000 iterations in each chain as burn-in
runs. Thus, inferences are based on samples of size 3,000 for each of the parameters in the
model.

model{

for(i in 1:N){

for (j in 1:M){

y[i,j] ~ dpois(theta[i,j])

theta[i,j] <- lambda[i] * e[i,j]

e[i,j] <- dev[i,j] / 1000

}

log(lambda[i]) <- beta1*signal[i] + c[i]

c[i] ~ dnorm(0.0, tau)

}

beta1 ~ dnorm(0.0, 1.0E-6)

tau ~ dgamma(0.01, 0.01)

sigma <- 1/ sqrt(tau)

}

Data

list(N = 20, M = 2)

y[ ,1] y[ ,2] dev[ ,1] dev[ ,2] signal[]

10 2 5766 5581 0

8 6 4307 4743 0

6 2 2623 1941 0

2 6 4240 4835 0

2 9 4844 4625 0

0 2 3178 2422 0

6 5 5162 5315 0

7 3 5420 5250 0

2 4 5392 4876 0

3 6 2987 3169 0

6 0 5725 4581 1

4 2 4207 4834 1
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1 0 2520 1981 1

1 4 4270 4235 1

2 3 3844 3625 1

0 2 4178 4422 1

2 2 4160 4355 1

4 1 6420 5850 1

4 3 6390 5856 1

2 1 2980 3248 1

END

Inits

list( beta1 = 0, tau = 0.1)

list( beta1 = 1, tau = 0.5)

list( beta1 = 2, tau = 1.0)

The posterior probabilities of rankings of intersections were obtained from the posterior
draws in two steps. First, we estimated the ranking of each of the 20 intersections in each
of the 3,000 draws. This was done using the following PERL script (T. Peterson, personal
communication):

open(IN,"<c:\\lambdas.dat");

open(OUT,">c:\\lambdas.rank");

while(<IN>) {

chop;

@row = split(/ /,$_);

$index = 1;

foreach $value (sort @row) {

$row_sort{$value} = $index++;

}

foreach $value ( @row) {

printf OUT "%3d", $row_sort{$value}," ";

}

print OUT "\n";

}

close(IN);

close(OUT);

exit(0);

The ranks were then sorted and ranked themselves using standard functions in SAS to
sort, rank and identify minima, maxima or percentiles in a numerical list.
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