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ABSTRACT 

The highway departments of all fifty states were contacted to find 

the extent ~f application of integral abutment bridges, to survey the 

different guidelines used for analysis and design of integral abutment 

bridges, and to assess the performance of such bridges through the years. 

The variation in design assumptions and length limitations among the 

various states in their approach to the use of integral abutments is 

discussed. The problems associated with lateral displacements at the 

abutment, and the solutions developed by the different states for most 

of the ill effects of abutment movements are sununarized in the report. 

An algorithm based on a state-of-the-art nonlinear finite element 

procedure was developed and used to study piling stresses and pile-soil 

interaction in integral abutment bridges . The finite element idealiza­

tion consists of beam-column elements with geometric and material nonlin­

earities for the pile and nonlinear springs for the soil. An idealized 

soil model (modified Ramberg-Osgood model) was introduced in this inves­

~igation to obtain the tangent stiffness of the nonlinear spring elements . 

Several numerical examples are presented in order to establish the 

reliability of the finite element model and the computer software devel· 

oped. Three problems with analytical solutions were first solved and 

compared with theoretical solutions. A 40 ft H pile (HP 10 x 42) in 

six typical Iowa soils was then analyzed by first applying a horizontal 

displacement ~ (to simulate bridge motion) and no rotation at the top 

and then applying a vertical load V incrementally until failure occurred. 

Based on the numerical results, the failure mechanisms were generali~ed 
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to be of two types: (a) lateral type failure and (b) vertical type 

failur~. It appears that most piles in Iowa soils (sand, soft clay and 

stiff clay) failed when the applied vertical load reached the ultimate 

soil frictional resistance (vertical type failure) . In very stiff 

clays, however, the lateral type failure occurs before vertical type 

failure because the soil is sufficiently stiff to force a plastic hinge 

to form in the pile as the specified lateral displacement is applied. 

Preliminary results from this investigation showed that the vertical 

load-carrying capacity of H piles is not significantly affected by lat­

eral displacements of 2 inches in soft clay, stiff clay, loose sand, 

medium sand and dense sand. However, in very stiff clay (average blow 

count of 50 from standard penetration tests), it was found that the 

vertical load carrying capacity of the H pile is reduced by about 50 

percent for 2 inches of lateral displacement and by about 20 percent 

for lateral displacement of 1 inch. 

On the basis of the preliminary results of this investigation, the 

265-feet length limitation in Iowa for integral abutment concrete bridges 

appears to be very conservative . 
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1. INTRODUCTION 

1.1. Statement of the Problem 

Integral abutments on concrete bridges came into use in the state 

of Iowa in 1965 [l].* The current length limitation for such bridges in 

Iowa is 265 feet for steel H piling, 150 to 200 feet for timber piling 

with wrapping of flexible material, and under 150 feet for timber piling 

without wrapping [2] . These length limitations are based on first order 

theoretical analyses of the effects of thermal expansion and contraction 

of bridges on piling stresses. Yearly inspection of integral abutment 

bridges in Iowa for about five years after construction showed no dis­

tress associated with lack of expansion joints in the superstructure. 

Other states, e .g., South Dakota and Tennessee, have been allowing 

integral abutment bridges significantly longer than 265 feet with 

apparent success . Long bridges are particularly susceptible to damage 

from thermal expansion and contraction because of the relatively large 

displacements associated with annual temperature variations. Histori­

cally, a system of expansion joints, roller supports and other strucM 

tural releases is provided on long bridges to permit thermal expansion. 

However, providing expansion joints through a bridge leads to substantial 

increase in the initial cost. The expansion joints are also relatively 

high sources of deterioration and frequently do not operate as intended; 

thusi they result in high maintenance costs . 

Integral abutment bridges provide an attractive design alternative 

because expansion joints are not present. Thermal expansion, however, 

* Numerals in brackets designate entries in the list of references. 
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must be relieved or accounted for in some manner . In an integr~l abut­

ment bridge, the piles are usually the most flexible elements and are 

expected to accommodate the lateral movements due to thermal expansion. 

The maximum thermal expansion that can be allowed by the piles without 

destroying their vertical load-carrying capacity is of primary importance 

in defining the safe length of integral abutment bridges . If this 

length can safely be increased, the economic advantages of integral 

abutments can be realized for longer bridges. There has not been any 

analytical study to date to determine the effects of such factors as 

lateral movement and soil-pile interaction on the bearing capacity of 

piles in integral abutment bridges. 

1.2. Background 

Prior to World War II most bridges with an overall length of SO 

feet or more were constructed with some form of expansion joints. 

Periodic inspection of these bridges revealed that expansion joints 

tended to freeze and close and did not operate as intended. Closer 

inspection of such bridges also indicated that there was no serious 

distress associated with the frozen or closed expansion joints. This 

led to the advancement of the case for continuous construction. 

Continuity i n steel stringer and other types of bridges has been 

accepted practice since the early 1950s. In addition to the inherent 

economy of continuous beams, wherein negative moments over interior 

supports serve to reduce midspan positive moments, one l i ne of bearing 

devices was automatically eliminated at each interior support. The 



3 

predominant problem with these continuous bridges was at the abutments, 

where some kind of expansion joints were required. An example of such 

an abutment is shown in Fig. 1 [3]. These joints allowed penetration 

of water from the backfill and roadway into the bearing areas and onto 

bridge seats. The joints could then be forced closed, resulting in 

broken backwalls, sheared anchor bolts, damaged roadway expansion 

devices and other problems. Maintenance costs associated with these 

problems accelerated the development of integral abutments. 

Figure 2 shows typical integral abutments; each is supported by a 

single row of vertical piles extending into the abutments [1,4-7) . In 

addition to being aesthetically pleasing, integral abutments offer the 

advantage of lower initial cost and lower maintenance cost. Expensive 

bearings, joint material, piles for horizontal earth loads and leakage 

of water throug~ the joints are all eliminated. 

Kansas, Missouri, Ohio, North Dakota, and Tennessee were some of 

the early users of integral abutments to tie bridge superstructures to 

foundation pilings . This method of construction has steadily grown more 

popular. Today more than half of the state highway agencies have 

developed design criteria for bridges without expansion joint devices. 

Most of the states using integral abutments began by building them on 

bridges less than 100 feet long. Allowable lengths were increased on 

the basis of good performance of successful connection details. Full­

scale field testing and sophisticated rational design methods were not 

commonly used as a basis for increasing allowable lengths. This led to 

wide variations in criteria for the use of integral abutments from 

state to state. In 1974 the variation in maximum allowable length for 
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Figure 1. Cross-sectional view through a conventional abutment. 
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concrete bridges using integral abutments between Kansas and Missouri 

was 200 feet [l]. A survey conducted by the University of Missouri in 

1973 indicated that allowable lengths for integral abut~ent concrete 

bridges in some states were 500 feet while in others they were only 

100 feet. 

Continuous steel bridges with integral abutments have performed 

successfully for years in the 300 foot range in such states as North 

Dakota, South Dakota and Tennessee. Continuous concrete structures 

500-600 feet long with integral abutments have been constructed in 

Kansas, California, Colorado and Tennessee [8]. In Iowa the maximum 

bridge length for which integral abutment construction is allowed has 

been limited to 265 feet [l]. The Federal Highway Administration 

recommends integral abutments for steel bridges less than 300 feet long, 

for pre- or post-tensioned concrete bridges less than 600 feet long, 

and for unrestrained bridges, that is, bridges where the abutment is 

free to rotate as with a stub abutment on one row of piles or an abut­

ment hinged at the footing [8]. 

In an integral abutment bridge with flexible piling, the thermal 

stresses are transferred to the substructure via a rigid connection. 

Various construction details have been developed to accomplish the 

transfer as shown in Fig. 2. The abutments contain sufficient bulk 

to be considered a rigid mass. A positive connection to the girder 

ends is generally provided by vertical and transverse reinforcing 

steel. This provides for full transfer of temperature variation and 

live load rotational displacements to the abutment piling. 
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The semi-integral abutments shown in Fig. 3 are designed to mini­

mize the transfer of rotational displacements to the piling [4,7] . They 

do transfer horizontal displacements, and they also allow elimination of 

the deck expansion joints. Rotation is generally accomplished by using 

a flexible bearing surface at a selected horizontal interface in the 

a~utment. Allowing rotation at the pile top generally reduces pile 

loads. 

A survey of the fifty states and a review of the literature showed 

that there has not been a rigorous scientific theoretical or experimental 

study performed to ~stablish limits for integral abutment bridges . The 

limit of allowable horizontal movement that wi.11 cause objectionable 

pile stress and what constitutes an objectionable pile stress have not 

been well defined . This partly explains the wide variation in design 

criteria for integral abutment bridges that exists among the different 

state higheway agencies . 

1.3. Objective and Scope 

The objective of this research is to make a preliminary determina­

tion of lengths to which bridges with integral abutments can be safely 

designed . As part of this investigation the highway departments of all 

the states in the union were contacted to find the extent of application 

of integral abutment bridges, to survey the different guidelines used 

for analysis and des~gn of integral abutment bridges , and to assess the 

performance of such bridges through the years. A state-of-the-art 

analytical model was devised to study the effect of thermal-induced 
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lateral movement of the pile on the carrying capacity of the pile. The 

analytical model was based on the finite element approach and incorpo­

rated geometric and material nonlinearities of the pile, nonlinear soil 

behavior, and soil-pile interaction. The analytical model was .verified 

through correlation of results with experimental data and then applied 

to Iowa soil conditions to determine maximum safe lengths for steel and 

concrete integral abutment bridges. 



11 

2. SURVEY OF CURRENT PRACTICE 

2.1. Objective 

As a background to the main objective of this research, which is to 

establish tentative recommendations on maximum safe lengths for steel 

and concrete bridges with integral abutments, a survey of the different 

states was made to obtain information on the design and performance of 

integral abutment bridges . This chapter swmnarizes the findings in 

this aspect of the investigation, including 

• Various design criteria and limitations being used; 

• Assumptions being made regarding selected design parameters 

and appropriate level of analysis; 

• Specific construction details being used; 

• Changes in trends since previous surveys were taken; and 

• Long-term performance of bridges with integral abutments. 

A more comprehensive report on the survey is included in a research 

report by Johnson [9]. 

2.2. Method of Investigation 

Surveys concerning the use of integral abutments have previously 

been conducted (1,7]. They have indicated that there are marked varia­

tions in design limitations and criteria for their use . Many states 

have not felt comfortable using a system that does not contain some 

"free sp;ice" for temperature variation displacements . 

Some of the variations among the states occur because of different 

temperature range criteria. Also, depending on the extent of deicing 
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salt use, some states may experience greater problems with bridge deck 

expansion joint devices than others. Naturally, it is difficult to 

justify altering existing construction techniques by either beginning 

the use of integral abutments or using them for much longer bridges if 

the possibility of decreased distress and maintenance are not readily 

apparent. 

A survey questionnaire was prepared in cooperation with the Office 

of Bridge Design, Highway Division, Iowa Department of Transportation, 

to obtain information concerning the use and design of integral bridge 

abutments. Based on a review of the survey, several states were later 

contacted to gain a better understanding of successful design details 

and assess the performance of relatively long integral abutment bridges. 

A sununary of the results of correspondence and telephone conversations 

with bridge engineers in Tennessee, Kansas, Missouri, North Dakota, 

California, and Iowa is included in Section 2.4 of this report. 

Most of the states that use integral abutments, as shown in Appen­

dix 9.1, have developed specific guidelines concerning allowable bridge 

lengths, design of the backwall, type of piling, etc. The basis of 

these guideli nes is shown to be primarily empirical. 

The questionnaire was sent to the 50 states and Puerto Rico. Since 

the Direct Construction Office, Region 15, Federal Highway Administration 

is involved in bridge construction on federally owned property, a ques­

tionnaire was also sent to the design department in Arlington, Virginia. 

A copy of the questionnaire and responses from each of these agencies 

are contained in Appendix 9.1. 



13 

The survey questions were directed at limitations in bridge length, 

type, and skew. The states were also asked what assumptions were made in 

determining fixity conditions and loads for design of the piling and 

superstructure. A detailed drawing of the type of integral abutment used 

in Iowa was included in the questionnaire. 

It was hoped that some of the states using integral abutments had 

performed an analysis regarding anticipated movements and pile stresses. 

The questions regarding fixity and design loads were included to deter­

mine what level of analysis was felt to be appropriate. 

Much of the progress in the use of integral abutments has come 

about by successive extension of limitations based on acceptable per­

formance of prototype installations. In order to learn more from the 

several states who have pioneered the use of integral abutments, ques­

tions were asked regarding costs and performance. 

2.3. Trends in Responses 

Of the 52 responses received, 29 indicated that their states use 

integral-type abutments. A few of these, such as New Mexico and Vir­

ginia, are just beginning to use them: their first integral abutment 

b~idge was either recently designed or currently under construction. 

Of the 23 who did not use these abutments, there were four groups 

having similar responses. 

• Fourteen states have no plans to consider using this type of 

abutment . 

• Five states responded that they have not previously considered 

the possibility of fixing the girder ends to the abutments. 
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• Three states have built some integral abutments or semi~integral 

~ndwalls but currently do not use them in new bridge construc­

tion. 

• One state indicated that they were presently investigating the 

possibility of using integral abutments . 

The following are some of the reasons given for avoiding the use 

of integral abutments: 

• The possibility of a gap forming between the backwall' and the 

roadway fill (two states); 

• Increased substructure loads (one state); 

• The possible attenuation of a bump at the ends of the brdige 

(one state); 

• The lack of a rational method for predicting behavior (one 

state); 

• The pos_s ible additional stress on approach pavement joints 

(two states); and 

• Cracking of the backwall due to superstructure end span rota­

tion and contraction (two states). 

One of the purposes of this study is to present methods of analys~s 

and design details that will reduce the potential ill effects of these 

concerns . Many of the states currently using integral abutments have 

effectively solved most of these problems. 

The following is a discussion, keyed to the survey question nwn­

bers, of the responses received from states using integral abutments . 

A summary of the responses is contained in Appendix 9 .1. 



15 

1. Most of the states using integral abutments do so because of 

cost savings. Typical designs use less piling, have simpler 

construction details, and eliminate expensive expansion joints. 

Some states indicated that their primary concern was to elimi­

nate proplems with the expansion joint. A few said that sim­

plicity of construction and lower maintenance cost! were their 

motivation . 

2 and 3. Table l shows bridge length limitations currently being 

used. In summary, 70 percent or more of those states using 

integral abutments feel comfortable within the following range 

of limitations: steel, 200-300 feet; concrete, 300-400 feet; 

and prestressed concrete, 300-450 feet. There are three states 

using longer limitations for each structure type. They typi­

cally have been building integral abutments longer than most 

states and have had good success with them . The move toward 

longer bridges is an attempt to achieve the good performance 

observed on shorter bridges for structures at the maximum prac­

tical length limit. This achieves the maximum benefit from 

what many regard as a very low maintenance, dependable abutment 

design . 

The difference in concrete and steel length limitations 

reflects the greater propensity of steel to react to tempera­

ture changes . Although the coefficients of expansion are 

nearly equal for both materials, the relatively large mass 

of most concrete structures makes them less reactive to am­

bient temperature changes. This is reflected in the design 
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Table 1. Integral abutment bridge length limitations (1981). 

Number of States 

Maximum Length Steel Concrete Prestressed 

800 1 1 

500 1 2 

450 1 3 

400 2 3 4 

350 1 3 1 

300 8 8 8 

250 2 1 

200 5 1 2 

150 1 

100 1 
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temperature variation specified by the American Association 

of State Highway and Transportation Officials (AASHTO), which 

is much lower for concrete. 

4. Only a few states responded to the question regarding limita­

tions on piling. Five states use only steel piling with inte­

gral abutments . Three others allow concrete and steel but not 

timber. No length limitations for timber piling were given by 

states other than Iowa. Timber piling is allowed in Iowa for 

bridges less than 200 feet in length. If the length is greater 

than 150 feet, the top of the pile which is embedded in the 

abutment is wrapped with 1/2 inch to 1 inch thick carpet pad­

ding material . This allows some rotation of the abutment, 

reducing the bending stress on the pile. Only four of the 29 

agencies indicated that the webs of steel piles were placed 

perpendicular to the length of the bridge. In subsequent 

phone calls to a few other states, it was learned that others 

also follow this practice. At least one state began using 

integral abutments with steel piling placed in the usual orien­

tation {with the pile web along the length of the bridge) . 

This led to distress. and cracking at the beam-abutment inter­

face, and the state eventually began to rotate the piles by 

90 degrees for greater flexibility . 

5 and 6 . Twenty-two states indicated that the superstructure was 

assumed pinned at the abutments. Five assumed partial fixity, 

and one assumed total fixity. Seventeen responses noted that 

at the pile top a pinned assumption was made; four reported a 
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partial fixity assumption; and five state~ believe the pile top 

is totally fixed. Six of the states which assume a pinned con­

dition actually use a detail designed to eliminate moment con­

straint at the joint. In the absence of a detail which allows 

rotation, the appropriate assumption ·depends largely on the rel­

ative stiffness of the pile group and the end span superstruc­

ture . For example, if a single row of steel pilings with their 

webs perpendicular to the length of the bridge was used with a 

very stiff superstructure, the joint would probably behave as 

if it were pinned in response to dead and live loads and as if 

it were fixed in response to temperature movements. If the 

stiffness of the pile group were increased, some degree of par­

tial fixity would result depending on the ratio of stiffnesses. 

7. Only a few states consider thermal, shrinkage, and soil pres­

sure forces when calculating pile loads. Several states noted 

on the questionnaire that only vertical loads are used in de­

sign. Of those that do consider pile bending stresses, eight 

use thermal forces, three use shrinkage forces, and ten con­

sider soil pressure. 

8 . Most states indicated that bending stresses in abutment pilings 

were neglected. There were three states, however, that assumed 

a location for a point of zero moment and used combined bending 

and axial stresses. Also, prebored holes were used by three 

states to limit bending stresses by reducing the soil pressure. 

9 . Most states indicated that a free-draining backfill material is 

used behind the abutment. Some responses, however, indicated 
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that problems were encountered such as undermining associated 

with granular soils . One state said, "Have recently experi­

enced problems with noncohesive material behind this type of 

abutment. Backfill material should be cohesive and free from 

cobbles and boulders . " Six other states use common roadway 

fill behind the abutment. 

10. All except four states rest the approach pavement on the i n­

tegral abutment. One state indicated that a positive tie 

connection was used to connect the slab. No comments regard· 

ing the practice of resting the slab on a pavement notch were 

noted . A few states indicated that they had experienced prob­

lems when reinforced approach slabs were not used . 

11 and 12 . All except three states reported lower construction and 

maintenance costs using integral abutments. One said costs 

were the same, and. two did not respond to the question . The 

following are some isolated comments that were made about con­

struction and maintenance problems using integral abutments: 

a. Longer wingwalls may be necessary with cast-in-place, 

post-tensioned bridges for backwall containment; 

b. The proper compaction of backfill material is critical; 

c. Careful consideration of drainage at the end of the bridge 

is necessary; 

d. Wingwall concrete should be placed after stressing of 

cast-in-place, post-tensioned bridges; 
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e. The effects of eiastic shortening after post-tensioning 

should be carefully considered~ especially on single span 

bridges; 

f. Proper placement of piles is more critical than for con· 

ventional abutments; 

g . Wingwalls may need to be designed for heavier loads to 

prevent cracking; 

h . Adequate pressure relief joints should be provided in the· 

approach pavement to avoid interference with the function­

ing of . the abutment; 

i. Possible negative friction forces on the pil~s should be 

accounted for in the design; and 

j. Wide bridges on high skews require special consideration 

including strengthening of diaphragms and wingwall•to­

abutment connections . 

2 . 4 . Review of Design and Details in Selected States 

Correspondence and telephone visi~s were conducted with six states 

to discuss in greater depth .the items covered on the questionnaire and 

to become more familiar with their des i gn rationale for integral abut­

ments. They were Tennessee, Kansas, Missouri, North D~kota, California, 

and Iowa. Some of the items covered in the visits are discussed below. 

2.4 . 1 . Tennessee 

Tennessee has extensive experience with integral abutment construc­

tion and performance. It is estimated that over 300 steel and 700 



21 

concrete bridges have been built with integral abutments. Mr. Ed Wasser-

man, Engineer of Structures, Tennessee Department of Transportation, 

indicated that the state was very pleased with the performance of these 

structures and has noted no undue stress on the abutments [10]. 

The maximum length limits using integral abutments were arrived at 

by setting a limit of expansion or contraction of 1 inch . This figure 

was developed empirically over a period of several years. By using a 

simplified column analysis with an unsupported length of 10 feet the 

state calculated the piling stresses to be just slightly over yield 

when deflected only 1 inch. Tennessee uses the average AASHTO tempera-

ture change of 35 °r for concrete structures and 60 °r for steel . The 

maximum bridge lengths (21) for this allowable deflection (A) are about 

800 feet for concrete and 400 feet for steel. 

where : 

L concrete = A = 1/12 
~ 396 feet a (6T) (0.0000060)(35) c c 

(1) 

L steel A 1/12 214 feet = a
8

(6T)
5 

= (0.0000065)(60) = 

a 
c 

(6T) 

a 
s 

(6T) 

c 

s 

= Coefficient of thermal expansion for concrete (AASHTO) 

= Allowable temperature drop or rise for concrete 
(AASHTO) 

= Coefficient of thermal expansion for steel (AASHTO) 

= Allowable temperature drop or rise for steel (AASHTO) 

Tennessee has no~ completed any research work to verify the assump-

tions used to develop design criteria other than observing the good 
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performance of constructed bridges . Abutment details used by Tennessee 

are very similar to Iowa's. Timber piles are not used. 

2 . 4 . 2 . Kansas 

Kansas has not participated in formal research activities .to formu­

late design criteria for integral abutments. The length limitations 

and details used have been developed empirically through many years of 

experience. The following length limitations have been established : 

steel, 300 feet; concrete, 350 feet; and prestressed, 300 feet. Mr. 

Earl Wilkinson, Bridge Engineer, Kansas State Highway Commission , indi­

cated that a few cast-in-place bridges up to 450 feet long_ had been 

built in the past with integral abutments, but this is not the general 

rule [11] . 

Point-bearing steel piles with 9000 psi allowable bearing are used 

most often . Some concrete filled stee l shell piling or prestressed 

concrete piles are occasionally specified. 

2.4.3. Missouri 

Missouri had planned to instrument the piling of an i ntegral abut­

ment several years ago but was unable to do so because of construction 

timing . No other investigations of integral abutments have since been 

planned. 

Criteria for use of integral abutments have been deve loped pri­

marily from following the success of other states, notably Tennessee. 

The maximum length limit for steel bridges has recently been increased 

from 300 to 400 feet. Over 100 concrete bridges (mostly prestress ed) 

and over 40 steel bridges have been built with integral abutments over 

a period of 12-15 years [12}. 
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2.4.4. North Dakota 

North Dakota has built over 300 bridges with integral abutments 

[13]. Most of these have concrete superstructures. They have had good 

performance except in two areas. First, the superstructure was origi­

nally connected to the backwall with dowell bars which were placed with 

insufficient cover. In some places· the concrete over the dowell bars 

on the inside face of the backwall cracked because of thermal forces 

caused by contraction of the superstructure. Second, the piles were 

originally placed with the webs parallel to the long axis of the bridge. 

Using this orientation caused some distress in the backwall since the 

piles offered relatively large resistance to lateral bridge movements. 

The problem was eliminated when the piles were installed with the webs 

perpendicular to the long axis of the bridge. 

North Dakota was an early user of integral abutments. Their design 

criteria are based mainly on their own experience. No formal analysis 

methods are employed to calculate stresses in the piles. Steel and 

concrete bridges are currently limited to 300 feet ~bile prestressed 

bridges are built up to 450 feet in length. 

Last year the state built a 450-foot prestressed concrete box beam 

bridge on a 0 degree skew near Fargo, North Dakota. The piles in the 

integral abutments were instrumented with strain gauges and had inclino­

meter tubes attached . Dr. Jim Jorganson, Civil Engineering Department, 

North Dakot~ State University, was conunissioned to monitor the movements 

and strains in the bridge for one year . He had a preliminary report 

prepared in late summer 1981. It appears that the maxi mum total movement 
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at each end is about 2 inches [14]. This is equivalent to a temperature 

variation of about 117 °F. 

The installation contains a unique feature which was designed by 

Moore Engineering, West Fargo, North Dakota. A special expansion joint 

material several inches thick is placed behind the abutment backwall. 

Behind ·it is a sheet of corrugated metal. The mechanism is designed to 

reduce passive earth pressures on the abutment and to help reduce the 

formation of a void space upon contraction of the superstructure . The 

system is shown in Fig. 4 and discussed further in Section 3. 

2.4.S . California 

California has engaged in several projects investigating the per­

formance of laterally loaded piles in bridge embankments [15] . This 

work has been done at California State University at Sacramento and by 

the California Department of Transportation, Bridge Department, and will 

be described more fully in the literature review (see Secti on 3) . . The 

research was · able to suggest _a correlation between the coefficient of 

subgrade reaction used in an elastic design method to the standard 

penetration blow count . Maximum bending moments in steel H-piles were 

predicted within 15 percent of measured values. 

California does not analyze pile stresses due to bending at each 

bridge site . Guidelines hav~ been developed to aid designers in deter­

mining the type of abutment to use . They are currently using integral 

abutments with concrete bridges up to 320 feet long . Because of the 

effects of elasti c shortening on application of post-tens ioni ng f o rces, 

the length limi tation for prestressed bridges i s about 100 feet l e ss. 
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Design of the endwall is based on specified horizontal loads depending. 

on the type of piling used (see Appendix 9.2). 

2.4.6, Iowa 

Iowa began building integral abutments on concrete bridges in 1965. 

One of the first was on Stange Road over Squaw Creek in Ames [16] . This 

·prestressed beam bridge is about 230 feet long with no skew.. A visit to 

t~is bridge in August 1981 to determine if any apparent distress was 

evident showed that both approaches were generally in good shape with no 

major cracking noted. The abutment walls, wingwalls, and beams showed 

no thermal movement related cracking or distress. 

Mr. Henry Gee, Structural Engineer, Office of Bridge Design, Iowa 

Department of Transportation, inspected at least 20 integral abutment 

bridges yearly for about 5 years after construction. They varied in 

length from 138 to 245 feet with skews from 0 to 23 degrees. The. in­

spections were terminated since no distress or problems were found which 

related to the lack of expansion joints in the superstructure. 

Iowa's length limitation for integral abutments in concrete bridges 

is 265 feet. This is based on an allowable bending stress of 55 percent 

of yield plus a 30 percent overstress since the loading is due to tem­

perature effects. The moment in the pile was found by a ri~id frame 

analysis which considered the relative stiffness of the superstructure 

and the piling . The piles were assumed to have an effective length of 

10 .5 feet, and the soil resistance was not considered. The analysis 

showed that the allowable pile deflection was about 3/8 inch. 
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2.5. Summary 

There is wide variation in design assumptions and limitations among 

the various states in their approach to the use of integral abutments. 

This is largely due to the empirical basis for development of current 

design criteria . Some states, such as Tennessee and Iowa, have used 

traditional statics analysis methods for a beam or beam-column to es­

timate piling stresses. It is recognized, however, that assumptions 

concerning end fixity and soil reaction may substantially affect the 

results. A simple rational method of accurately predicting pile 

stresses would be a valuable addition to the current state of the art 

in integral abutment design. 

The states that use integral abutments are generally satisfied with 

performance and believe they are economical. Some problems have been 

reported, however, concerning secondary effects of inevitable lateral 

displacements at the abutment. These include abutment, wingwall, pave~ 

ment, distress, and backfill erosion. Only a few states noted that any 

difficulty had been encountered (see Part 4 of Appendix 9.1). Other 

states reported that solutions have been developed for most of the ill 

effects of abutment movements. They include:· (1) additional reinforcing 

and concrete cover in the abutment, (2) more effective pavement joints 

which al~ow thermal movements to occur, and (3) positive control of 

bridge deck and roadway drainage . From the comments of most states, 

the writers infer that the benefits from using integral abutments are 

sufficient to justify the additional care in detailing to make them 

function properly. 
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Very little work has been done to monitor the actual behavior of 

integral abutments except in checking for obvious s i gns of distress in 

visible elements of the bridge. The research. work b~ing done in North 

Dakota to monitor actual strains and pile displacements . in an actual 

integral abutment installation is one of very. few full-scaie projects . 

It :Ls reported on mo:i::e fully in Section 3 of this report . 

Several states have been progressively increasing length limita-· 

tions for the use of integral abutments over the last 30 years. Improve­

ments in details have also taken place which generally can eliminate · 

the possibility of serious distress occurring with abutment movements 

of up to 1 inch. These progressive steps in the state of the art of 

bridge engineering have occurred over the past thirty years and are 

pri marily the result of the observance of satisfactory performance in 

actual installations. 
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3. REVIEW OF THE LITERATURE 

3.1. Methods of Analyses 

The problem of the laterally loaded pile is complex because it in­

volves the interaction between a semirigid structural element and the 

embedding soil. The problem is further complicated because of the non­

homogeneity of most natural soils and the disturbance to the soils 

caused by installing piles. 

In .the past, analyses and design of laterally loaded piles were 

primarily empirical based on data from full-scale tests of laterally 

loaded piles (17). However, in recent years, there has been extensive 

research and development to predict theoretically the .behavior of the 

laterally loaded pile. Two .basic appraoches have evolved: the subgrade 

reaction approach and the elastic approach [18) . 

. The subgrade reaction approach was originally proposed by Winkler 

in 1867 when he r epresented the soil as a series of unconnected line­

arly elastic springs. In this method the continuous nature of the soil 

medium is ignored. Such factors as nonlinearity, variation of soil 

·stiffness with depth and layering of the soil profile can be incorpo­

rated into the method (18]. Several methods have been used to account 

for soil nonlinearity [19-21], including an elasto-plastic Winkler model 

(19]. One of the more widely used approaches has been to use a series 

of p-y (pressure-defle.ction) curves for the soil at various points along 

the pile and a finite difference solution of the following differential 

equation: 
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(2) 

where 

y = deflection; 

M = moment at depth z in pile 

z = depth; 

p = axial z load on pile at depth z; and 

p = soil reaction per unit length 

The elastic approach in which the soil is considered as an elastic 

continuum has been described by several authors [22-24]. The elastic 

method can be modified to make allowance for soil yield and can also be 

used to give approximate solutions for varying soil modulus with depth 

and for layered systems [18]. 

A versatile method of analysis which permits the inclusion of all 

the factors mentioned above and which also makes a three-dimensional 

formulation possible is the finite element method. A detailed descrip-

tion of the finite element formulation used in this investigation is 

given in Section 4. 

3 . 2. Soil Properties 

Soil properties and characterization of soil-pile interaction are 

needed as input for the nonlinear finite element analysis of pile 

capacity. The soil response can be characterized by three different 

types of curves: lateral resistance - displacement (p-y) curves, load-

slip (f-z) curves and load-settlement (q-z) curves for the tip of the 
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pile. Typical p-y [25], f-z [26], q-z [27] curves are shown in Figs. 

5-7. Numerous methods exist for estimating these curves for different 

types of soils. A brief discussion on some of these methods follows. 

3.2.1. Lateral Resistance - Displacement (p-y) Curves 

Probably the most accurate method of developing p-y curves is to 

use sensitive instruments to measure pile deflection and earth pressure 

directly in a full-scale lateral load test. Although the necessary 

equipment could probably be obtained given the level of current tech-

nology, the method would be expensive and time consuming. 

Another potentially accurate method is to place electric strain 

gauges along the length of the pile. After calculating pile stresses 

and bending moments from the strain readings, the soil pressure (p) and 

lateral displacement (y) can be found from Eqs. (3) and (4) : 

y = ff M/EI dx (3) 

2 2 p ::: d M/dx (4) 

where: 

M ::: applied moment in the pile 

This method is also quite expensive and requires extreme care in taking 

measurements since the deflection is extremely sensitive to variations 

in the bending moment [28]. 

It is possible to obtain approximate values for p-y variations 

along the pile by knowing the load, moment, deflection, and rotation 
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at the top of a test pile . This simple test requires only that a 

pile be driven beyond the point below which the soil has no appreciable 

effect on pi le-Lop deflections and a latera l load be applied while 

measurements are periodically recorded. The method is based on Reese 

and Matlock's nondimensional solutions [29] which assume a linear vari-

ation of soil modulus with depth . Relatively accurate information can 

be obtained, but the method [30] does require actual field measurements 

to be taken . 

Several investigators [28,31,32,33,34] have attempted to correlate 

a lateral load-deflection response with laboratory soil tests . The form 

of the equation normally used in clay is shown in Eq. (5): 

where: 

( J 
l/n 

= 0.5 _y_ 
Y50 

p = soil resistance per unit length of pile 

(5) 

Pu = ultimate soil resistance per unit length of pile 

y = displacement corresponding to p 

Y50 = displacement at one-half ultimate soil reaction 

n = a constant relating soil resistance to pile deflection 

Possible functional relations and values for n are shown in Table 

2. The f ollowing specific values for a soft clay have been suggested 

by Reese: 

( J 
1/3 

= 0.5 ~ 
Y50 

(6) 



36 

Table 2. Constants used in p-y relationships for clays. 

Soft Clay Firm Clay Very Stiff Clay 

n 3 4 2 

c1 2 .5 2.5 2.0 

J 0.5 0.5 2.0 



where: 

J 

b 

c 

x 
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= J (3 + ~ + J ~) cb 
\9cb (use smaller value) 

(7) 

(8) 

(9) 

= a constant which controls the depth at which p reaches 
9 cb for clays u 

= pile diameter 

= average undrained shear strength of soil from ground 
surf ace to depth x 

= depth at which p is computed u 

= average effective unit weight of soil within the depth x 

= a constant relating pile deflection to laboratory strain 

= strain at SO percent of the maximum principal stress 
difference, (a1 - a3) /2 max 

The Iowa Department of Transportation's current soil investigation 

procedure at bridge sites includes taking a split tube sample if 

compressible layers are found in the area of the approach fill. Soil 

strength, unit weight, and compressibility data are routinely obtained 

on these samples by performing triaxial, density, and consolidation 

tests. If three split tube samples were taken, sufficient information 

would be available to predict the soil response with reasonable accuracy 

to a depth of about 15 feet . Since soil conditions below about 15 feet 

have little effect on bending stresses in laterally loaded piles [35,36], 

sample depths of 3, 7, and 12 feet would seem to be convenient choices. 

If stiff clay and very stiff clay are encbuntered, the equations 

are modified slightly. Generally, t 50 will be somewhat lower and the 

exponent is changed from 1/3 to 1/4 and 1/2, respectively. 
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A sununary of the p-y curves used in this investigation, including 

p-y curves for sand, is given in Table 3. Descriptions of the param-

eters used in Table 3 are provided in Table 4. The p-y formulations 

used in this investigation are similar to those summarized by Welch and 

Reese (21). 

3.2 . 2. Load-Slip (f-z) Curves 

Several methods have been proposed for estimating the load-slip 

behavior of single piles. The criteria used in this investigation fol-

low the formulations summarized by Ha and O'Neill (37) . An f-z curve 

based on load tests of single piles is shown in Fig. 8. The figure 

shows a curve normalized with respect to the maximum shear stress de-

veloped between pile and soil (f ) and the relative displacement (z ) max c 

required to affect f max The methods adopted for estimating f are max 

summarized below. 

For piles in clay soil and sand, f may be estimated using (37): max 

where 

for clay soil 

for sand (10) 

a = shear strength reduction factor 

C =undrained cohesion of the clay soil (see Fig. 9), and 
u 

N = average standard penetration blow count 

For purposes of this investigation, C was correlated to standard 
u 

penetration blow count, N, values from soil test data of Iowa soils [9]. 

Data from nineteen sites in four Iowa counties (Blackhawk, Benton, 

Buchanan, and Linn) were analyzed and a simple linear prediction model 



Table 3. Analytical forms of p-y curves . 

Case 

Soft Clay, 
Static Load 

Stiff Clay, 
Static Load 

Very Stiff Clay, 
Static Load 

Sand, 
Static Load 

Basic p-y Curves 
Equations 

p/pu = 0 . 5 (y/y )1/3 
50 

p/pu = O.S(y/yso)I/4 

p/pu = o.5(y/y
50

)1/2 

p/p = tanh(E .y/p ) u 61. u 

Y50 

2.5 Beso 

2 .5 Be50 

2.0 Be50 

p (use lesser value) 
u 

p = 9 CuB 
u 

p = (3 + 1- x + 0. 5 x)C B 
u C B u u 

p = 9 CuB 
u 

p = (e + 1- x + 0
•5 x)C B 

u C B u u 

p = 9 CuB 
u 

p = (3 + 1- x + 2 · 0 x)C B 
u C B u 

u 

p = y x [B(k - k ) + 
u p a 

p = u 

x k tan a (tan ~) + 
p 

x k tan ~ (tan ~ - tan a)] 
0 

1X(k 3 + 2k 2k tan~ - k )B p p o a 

Esi Em 

Em/1.35 Jyx 

w 

'° 



Table 4. 

Parameter 

B 

x 

k 
0 

J 
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Evaluation of parameter~ for Table 3. 

Evaluation 

From laboratory triaxial test, or use 
= 0.02 for soft clay 
= 0.01 for stiff clay 
= 0. 005 for very stiff clay 
(Axial strain at 0.5 times peak stress difference) 

Undrained cohesion indicated for UU laboratory test 

pile width 

Effective unit soil weight 

Depth from soil surf ace 

Angle of internal friction 

= tan2(45° + !) 
2 

= tan2(45° - ~) 
2 

:: 1 - sin«!> 

:: ! 
2 for dense or medium 

= ~ 3 
for loose sand 

= 45° + ! 
2 

= 200 for loose sand 

= 600 for medium sand 

= 1500 for dense sand 

sand 
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was devised. The best fit equation given below had a correlation of 

0. 82 with the actual data, 

C = 97.pN + 114.0 (lbs/ft2) 
u 

3.2 .3. Lo~d-Settlement (q-z) Curves 

(11) 

A typical q-z curve is shown normalized in Fig. 7 [38] . The curve 

is defined by estimating the bearing capacity of the pile tip, Q , max 

and the corresponding vertical deflecton, Z . c 

For end bearing piles in clay ($ = 0) and sand the following formula­

tions may be used for estimating Q [39]: max 

where 

For clay, Q = 9 Cu AB and max 

c = undrained cohesion of soil u 

AB = tip area 

-a = v 
vertical effective stress 

N = bearing capacity factor 
q 

(12) 

at pile tip 

at pile tip 

N depends, among other factors, on angle of internal friction, 
q 

degree of compressibility and ratio of horizontal to vertical stress. 

N may be approximated by [40] 
q 

N = (1 + tan$)entan$ tan2(45° + $/2) 
q 

Limiting values of a =Na are given in Table 5 [40]. 
IJlaX q V 

(13) 
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Table S . Typical and limiting parameters for driven piles in medium 
dense to dense sand. 

Limiting f Limiting ~ 

Soil Type 0 (degrees)* 2max 2 ax 
(kips/ft ) (kips/ft ) 

Clean Sand 30 2.0 200 

Silty Sand 25 1. 7 100 

Sandy Silty 20 1.4 60 

Silt 15 1.0 40 

*o = angle of pile-soil friction . 
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a may also be obtained from SPT (standard penetration test) and 4tllax 

CPT(cone penetrometer test) tests. a may be approximated by (41] . 4tllax 

where 

<luiax = 8 N corr kips/ft2 

N = corrected SPT blow count at depth of pile tip corr 

= N (uncorrected) if N ~ 15 

= 15 + 0.5 (N - 15) if N > 15 

(14) 

Z corresponding to a may be related to cross-sectional proper-c inax 

ties . Z may be estimated to be in the range of 0.02-0 . 05 (0 . 05 in the c 

absence of any data) times the tip diameter of the pile 137]. 

3 .3. Research on Integral Abutment Bridges 

3.3 . 1. California 

California [42] began informal studies of some of their long struc-

tures without expansion joints about 15 years ago. Their efforts con-

sisted of identifying appropriate structures and conducting periodic 

inspections to monitor performance. Twenty-seven bridges were studied . 

They varied in length from 269 feet to 566 feet. About 18 of the bridges 

had integral abutments while the others had semi-integral abutments . An 

example of a typical inspection record (43) is shown in Fig . 10 . 

Although a final report on this study will not be available until 

1982, the Structures Office, California Department of Transportation, 

has reported the following interim findings (15]: 
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SAMPLE 

INSPECTION RECORD 
OF 

STRUCTURES WITHOUT EXPANSION JOINTS 

Br 53-1671 

Type RCB 

Date~--:::5_-~l~-~6~7~~~~­

Name~~F~a=i=r~f~a=x"----'On==-~Ram'-="~P---~~~~-Co-Rt~e~~LA==--~l~O=---~~~~ 

Length 352' Skew Var. Year Built~~l~9~6~4'--~~-

J 

ELEVATION 

APPROACH PAVEMENT 

Type: AC 

Condition: The Westerly approach appears to have been patched twice, 
it is now in good condition . Easterly approach has settled slightly, 
it has never been patched. A 1/16" wide transverse crack has occured 
in the Easterly approach about 8' from the abutment for most of the 
width. The crack has been filled with latex. 

STRUCTURAL DEFECTS 

Space between structure and PCC curb: 1/2" Westerly, 
3/8" Easterly. 

Deck surface has a few transverse cracks over the bents, 
otherwise crack free. 

No cracks found in soffit, webs, abutment walls, or columns. 

There is a 1/2" crack between fill and backwall ·of Westerly 
abutment. 

COMMENTS 

Traffic volm1e appears to be light to moderate. 

Figure 10. Sample inspection record of structures 
without expansion joints. 
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• There is no apparent distress at end bent columns; 

• There is no cracking on girder soffits related to the lack 

of deck joints; 

• No structural distress is apparent at the abutments; 

• Some problems have occurred from erosion and piping of abut­

ment support soils due to small amounts of water flowing down 

behind the abutments; and 

• There are no apparent deck cracking problems associated with 

expansion stresses. 

The interim -report recommends that a reinforced concrete approach 

slab be used with all jointless structures. 

In 1971 and 1972 the California Department of Transportation and 

the Federal Highway Administration sponsored a research project to 

correlate theoretical solutions for laterally loaded piles to full­

scale field tests in bridge embankments . Most of the work was done 

by W. S. Yee at the University of California at Sacramento. 

Yee worked with two available solutions for laterally loaded piles. 

The first was the nondimensional solutions with soil modulus proportional 

to depth developed by Reese and Matlock (29) . This method allows analy­

sis of variable fixity conditions at the pile top and can be used in an 

iterative solution for other than linear variations of the soil modulus. 

Yee also used the finite difference solution to the general differential 

equation. Since the pile is separated into small elements in this solu­

tion, any discrete variation in the soil modulus can be acc-0mmodated . 

In Yee's study, however, a linear variation was assumed. The coef­

ficient of soil modulus (nh) was determined by measuring the deflection 
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and rotation at the top of a laterally loaded pile as described by 

Davisson [44]. 

Load tests were performed on instrumented pilings at three actual 

bridge construction s i tes. Using strai n gauge measurements, the moment 

in the pile was calculated and compared to calculated moments using the 

experimentally determined nh value. A typical example of the results 

is shown in Fig. 11 [39). 

Yee [39] concluded that: 

• Reliable predictions of bending moments and pile stresses 

could be found using experimentally determined nh values and 

either the nondimensional solution or the finite difference 

method; 

• The use of a linear variation in soil modulus with depth is 

a good approximation; 

• The influence of the soil below about 12 to 20 feet on 

pile stresses was practically negligible; and 

• The effective length of the pile was about 15 feet for a 

free-head condition and about 21 feet for a fixed-head 

condition . 

The results of this research were used to develop guidelines for 

the use of integral abutments in California . They are used when up to 

1 1/2 inches of total movement due to thermal forces is expected in a 

reinforced concrete bridge. Also to avoid rotation problems at the 

abutment, the end span is limited to 160 feet . The use of integral 

abutments is limited on prestressed bridges to those where the elas tic 
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--p = 15,330 L 
(MEASURED) 

~~-p = 12,610 LB 
(MEASURED) 

,1+_,,__..._ p = 9,310 LB 
(MEASURED) 
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Figure 11. Calculated versus experimentally determined pile moments. 
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shortening due to post-tensioning is less than 3/8 inch, and the end 

span is less than 115 feet (see Appendix 9.2). 

3.3.2. Missouri 

In 1972 the University of Missouri conducted a survey and feasibil­

ity study of integral and semi-integral abutments. The work was spon­

sored by the Missouri State Highway Department and the Federal Highway 

Administration [7]. The survey was undertaken to determine current 

design methods and limitations used by state highway agencies and the 

feasibility of instrwnenting a jointless bridge to obtain thermal-induced 

stresses. 

The survey indicated that 13 states were using integral abutments 

with steel bridges and 24 were using them with concrete bridges. The 

distribution of length limitations was as shown in Table 6 . Three 

states allowed the use of integral abutments for nonskewed bridges only; 

none used them with skews over 30 degrees. 

The survey concluded that: 

• The use of superstructures connected to flexible substructures 

was becoming generally acceptable; 

• Design limitations were more restrictive for steel bridges 

than for concrete; 

• There was no simple design criteria which accounted for 

shrinkage, creep, temperature, or substructure flexibility; 

• Induced stresses resulting from thermal effects, creep, 

shrinkage, backfill movement, etc., are recognized by bridge 

engineers as potentially significant, but there is a wide 

variance in method for considering them; and 



51 

Table 6. Integral abutment bridge length limitations (1972) . 

Number of States 

Maximum Length (feet) Steel Concrete 

100 2 4 

200 8 6 

300 2 7 

400 2 

450 2 

500 1 
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• Bridge design engineers are interested in induced stresses 

and associated problems, are generally uncertain as to the 

significance of and suitable methods for consideration of 

these stresses, and would welcome simple, rational design 

criteria and specific recommendations as to design details. 

In the feasibility study a temperature distribution model was 

developed and superstructure stresses were calculated for a wide range 

of temperature variations. The nondimensional solutions for laterally 

loaded piles developed by Reese and Matlock [29] were used with an as­

sumed value of the modulus of soil reaction. Instrumentation procedures 

were recommended for a field test to verify the theoretical results. 

The field test, however, was not carried out and no further work has 

been done on the project. 

3.3.3. South Dakota 

In 1973 South Dakota State University conducted full-scale model 

tests on integral abutments to determine induced stresses in the super­

structure and the upper portion on the piling [1]. The model consisted 

of two HP 10 x 42 steel piles on 8-foot 6-inch centers cast into a rigid 

concrete abutment with two plate girders about 26 feet long . The 32-foot 

piles were driven into silty clay over glacial till to a bearing capacity 

of 23 tons. The pile tops were welded to the bottom flanges of the 

girders. 

Various lateral displacements within plus or minus 1 inch were 

induced at the abutment by jacking at the free end during four construc­

tion stages. The results of interest are with the slab and backfill in 

place. Strains were measured corresponding to stresses of up to 42 kips 
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per square inch in the piling. This occurred just below the bottom of 

the concrete abutment. Several conclusions--called qualitative results 

which would require further study to verify--were drawn by the investiga­

tors: 

• Stresses were induced into the girders which in some cases 

were additive with dead and live load stresses. The induced 

stresses were generally within the 40 percent overstress 

allowed by AASHTO. 

• Horizontal movements over about 1/2 inch will cause yielding 

in the piles. 

• Free draining backfill is recommended since frozen soil against 

the abutment can greatly increase induced girder stresses by 

limiting free movement. 

• The use of approach slabs which allow rotation and translation 

of the abutment and, if possible, avoid continuing compaction 

of the backfill by traffic is recommended . 

As part of this study a questionnaire was sent to ten states in the 

north central part of the United States. Two trends can be identified 

when the survey is compared to the responses of these states to the 

survey recently conducted by Iowa. Four of the states (Idaho, Missouri, 

North Dakota, and South Dakota) have substantially increased their length 

limitations for use with integral abutments. Four of the states (Iowa, 

Kansas, Nebraska, and Wisconsin) have retained the same limits, and two 

states still do not routinely use integral abutments. Also of interest 

is the fact that three of the states have been routinely using integral 
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abutments with steel bridges since 1973; four of them already did and 

one still does not. 

3.3.4. North Dakota 

A recently constructed county road bridge near Fargo, North Dakota, 

was instrumented and monitored for temperature-induced stresses by 

North Dakota State University [14). The study is being conducted by 

J. Jorgenson, Chairman of the Civil Engineering Department, and is 

sponsored by the State Highway Department. 

The bridge is a 450-foot by 30-foot prestressed. concrete box girder 

with six 75-foot spans and no skew angle. It was designed by Moore 

Engineering, West Fargo, North Dakota and built in August 1979 on a 

very low volume gravel road. Since the bridge length was at the limit 

for the use of integral abutments in North Dakota, a unique system was 

used to limit the passive earth pressure on the backwall. A diagrammatic 

representative of the abutment is shown in Fig. 4 [14). 

The purpose of the expansion joint material behind the abutment is 

to hold back the soil during thermal contraction of the superstructure 

and to provide a collapsible mass to work against during expansion. 

Jorgenson informed the writer that the maximum l~teral movement measured 

at the pile top has been about 2 inches . No distress has been noted 

which could reasonably be attributed to this movement . Jorgenson also 

reported that the bridge approach to superstructure transition was still 

very smooth . 

The pilings are founded in a deep glacial clay layer. Soft clay 

deposits exist near the surface and down to the limit of influence on 

the temperature stresses in the pile . Actual stresses in the piles 
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are being determined from strain gauge readings for various temperature 

ranges throughout the year. The results of this analysis were to be 

available in the late summer of 1981 . Based on the results of the 

South Dakota study, it seems likely that the piles are being stressed 

above yield with the reported off-center deflections of up to 1 inch 

occurring . 
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MATHEMATICAL MODEL 

4.1. Mathematical Model Description 

The purpose of this section is to describe a state-of-art mathe­

matical model that can be used to help evaluate the safety of piles 

in bridges with integral abutments. As illustrated schematically in 

Fig. 12, if an integral abutment bridge is subjected to a change in 

temperature, thermal expansion and/or thermal stresses will occur. 

Since the piles are usually the most flexible elements, they will be 

displaced laterally and their vertical load carrying capacity could be 

affected. 

The mathematical model developed in this investigation was limited 

to defining the behavior of the piles as part of the bridge system. 

Thus, a significant portion of the work focused on an accurate descrip-

. tion of the laterally and vertically loaded piles. A combination of a 

one-dimensional idealization for the piles (beam-column) and an equiva­

lent spring idealization for the soil, which included (a) vertical 

spring, (b) lateral spring, and (c) point spring for the foundation, are 

shown in Fig. 13. Important parameters for this analysis were the pile 

and soil characteristics. Pile characteristics can be represented by 

the beam-column element with geometric and material nonlinearity. Soil 

characteristics can be divided 

into two parts, described below. 

• Axial Behavior . A unique relationship is assumed to exist 

between unit skin friction (f), i . e., shear stress, and the 

relative deflection between the pile and the soil at each depth 
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1 PILE 

Figure 12. A mathematical model of integral abutment bridge with 
pile/soil interaction. 
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VERTICAL SPRING--.. 

LATERAL SPRING 

+----POINT SPRING 

Figur e 13. Pile fin ite element model. 
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(z). This relationship, denoted by the f-z curve, can vary from 

depth to depth, if necessary, in order to model, for example, 

nonuniform or layered soils or installation procedures that may 

produce gradation effects . Also, a unique relationship, the 

q-z curve, is assumed to exist between stress load at the pile 

tip (q) and tip deflection relative to the soil (z). Several 

criteria exist with respect to the synthesis of f-z and q-z 

curves (see Section 3.2). 

• Lateral Behavior . Lateral soil pressure (transverse to the 

pile axis) will exist against a pile if the pile is battered 

or has lateral loading in the form of shear or moments applied 

to the top of the pile . The lateral soil reactions are rep­

resented by lateral nonlinear springs (p-y functions) which 

relate lateral soil reaction in force per unit length of the 

pile (p) to lateral pile displacement (y). The p-y curves 

can vary from depth to depth, especially for layered soils 

(see Section 3.2). 

The set of curves, f-z, q-z, and p·y, seem to imply that the be­

havior of the soil at a particular depth is independent of the soil 

behavior at all other depths. That assumption, of course, is not 

strictly true. However, it has been found by experiments [45] that, for 

the patterns of pile deflections which can occur in practice, the soil 

reaction at a point is dependent essentially on the pi le deflection at 

that point and independent of the pi le deflections above or below. 

Thus, for purposes of analysis, the soil can be replaced by a set of 
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discrete nonlinear soil springs with load-deflection characteristics 

of the character of the f-z, q-z and p·y curves. 

4 . 2. Finite Element Idealization 

The initial development of the finite element method for aerospace 

and structural engineering was soon followed by application of the 

method to problems in soil and rock mechanics . The nature of soils and 

rocks, however, is highly complex and required different considerations 

from the material used in structures. A realistic appraisal of the com­

plexities imposed by such natural causes as joints and other discontinu­

ities would often require that soils and rocks be treated as discontinua. 

Nevertheless, approximate but acceptable solutions can be obtained by 

considering them as continuous mass [46). In most applications of the 

finite element method, the continuum approach is used; hence we shall 

restrict our attention to this idealization. Furthermore, we shall con­

sider only those aspects of soil and rock mechanics directly related to 

the applications of the finite element method. Several books [47-49] 

dealing exclusively with the fundamentals of the finite element method 

and its application to a wide class of problems have been published . 

Consequently, the basic concepts of the method will only be reviewed 

very briefly and the formulations that are of direct relevance to the 

present study will be presented. 

4 .2.1. Basic Concept of the Finite Element Method 

The finite element method is based upon the general principle known 

as going from a part to the whole. In engineering many problems cannot 
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be solved in closed form, that is, as a "whole . " Therefore, we consider 

the physical medium as an assemblage of many small parts. Analysis of 

the basic part forms the first step toward a solution. The structure 

is idealized as an assemblage of separate elements interconnected at 

nodes. The type of element, the number of elements and the arrangement 

of the elements can be selected properly on the basis of the accuracy 

needed and the available computer facilities. 

Regardless of the shape or the type of the finite element the 

analysis is carried out using the same basic principles . In the dis­

placement approach, the displacements within an element are approximated 

by a function of the nodal displacements following a simple pattern, 

usually polynomials. This assumed displacement function can then be 

used to derive the stiffness matrices for the elements using the prin­

ciple of virtual work. The element stiffnesses are appropriately added 

to form the total stiffness matrix for the structure. The resulting 

simultaneous algebraic equations which relate nodal forces to nodal 

displacements are then solved. From the known nodal displacements, 

using the assumed displacement functions, the displacements, strains 

and stresses at any point within the element can be calculated. 

4.2.2. Causes of Geometric and Material Nonlinearities 

All phenomena in solid mechanics are nonlinear. In many applica­

tions, however, it is practical and convenient to use linear formula­

tions for problems to obtain engineering solutions. On the other hand, 

some problems definitely require nonlinear analysis if realistic results 

are to be obtained. Some examples of situations in the latter category 

include the postyielding and large deflection behavior of structures, 
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the postbuckling deformations of beams, plates, and shells and nearly 

all problems in soil and rock mechanics. The type of nonlinearity can 

be classified as geometric nonlinearity and/or material nonlinearity 

depending on the distinct phenomena. 

Geometric nonlinearity is ascribed to large-deflection problems in 

which the deformed configuration must be used to write equilibrium equa­

tions and to problems related to structural stability . In this case, 

the pile is ·in compression and geometric nonlinearities are important. 

Material nonlinearity is due to nonlinear stress-strain relationships of 

the materials that make up the structure. For the present problem, the 

soil and, possibly, the steel may exhibit nonlinear material behavior. 

It is possible in an analy~is to include nonlinearity due to either or 

both material or geometric causes. Both nonlinearities will be included 

in this soil-structure interaction problem. 

4.2 . 3 . Pile (Beam-Column) Model 

A large-displacement, geometrical, nonlinearity problem can be 

analyzed in Lagrangian coordinates or in Eulerian coordinates. 

The Lagrangian approach is called "stationary Lagrangian" and total 

Lagrangian . In this approach the original reference frame remains sta­

tionary and everything is referred to it regardless of how large the 

strains and rotations become . Displacements, differentiations and inte­

grations are all with respect to the original frame. As displacements 

become larger and larger, more and more terms must be added to the 

strain-displacement relations in order to account for nonlinea~ities 

[50). 
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The Eulerian approach involves convected coordinates: a refer­

ence frame that deforms with the structures so that the (convected) 

coordinates of a point never change [49]. As actually implemented, 

the Eulerian approach takes a form that is usually called the "updated 

Lagrangian" approach. It can be described as follows. A local coordi­

nate system, called a corotational system, is attached to each element . 

The local system moves with the element and therefore shares its rigid­

body motion. Differentiations and integrations are performed with 

respect to local coordinates . The current deformed state is used as 

the reference state prior to the next incremental step of the solution. 

The local coordinates are updated to produce a new reference state as 

the solution proceeds . Local coordinates of material points do change, 

so the method is not strictly Eulerian . Essential nonlinearities are 

accounted for by tracking the orientations of the several local systems. 

The equations are developed in terms of displacement increments. 

The updated Lagrangian (corotational) coordinate system for the 

beam-column element is defined so that the x axis is. and remains coin­

cident with a line joining the endpoints of the element, as shown in 

Fig. 14. The origin is taken to coincide with node 1 of the element, 

and the y axis is perpendicular to the x axis. Thus, in the local x,y 

system, only three nodal displacements are considered: that is, A12 , 

e1, e2 . All degrees of freedom (d . o.f .) in the global directions , D1 

to 06 (see Fig. 14), are generally nonzero. The global coordinate sys­

tem denoted as X,Y is also shown in Fig. 14. 
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y 

x 
(A) UNDEFORMED STATE 

.. 1 

x 
(B) DEFORMED STATE 

Figure 14. Beam-column element with corotational (x, y) 
anq gl.obal (X, Y) coordinates. 
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In this updated Lagrangian formulation, the displacement fields of 

each element, u and v, are additively decomposed into rigid body defor-

mation displacements; . that is 

(15) 

Now the rigid body displacements can be easily observed by giving 

any displaced configuration of the beam. The orientation of the updated 

Lagrangian coordinate is immediately specified by the x axis which al-

ways connects the endpoints . The translation and rotation needed to 

update the Lagrangian coordinate system are the rigid body displacements . 

Any remaining displacements are deformation displacements. 

The strain-displacement equation is determined from the large-

deflection strain-displacement equation by assuming planes remain plane 

during bending : 

~ = aud + ! (aud)
2 

- y 
ax 2 ax 

(16) 

For the beam-column element, the linear and cubic shape functions 

are assumed to represent the deformation displacements, ud and vd, in x 

and y directions respectively. This deformational displacement field 

is given by 

0 

0 ~Ct3 - 2t2 
+ t) 

= [N] {dd} 

0 

(17) 
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where 

and ~ is the distance between nodes 1 and 2 of the beam-column element 

at any stage, and the deformation nodal displacements are 

(18) 

and the corresponding nodal forces are 

(19) 

This deformation is then followed by a rigid body rotation a and trans-

lation. Thus, if the nodal rotations in the local system are d3 and d6, 

it follows that 

(20) 

The elongation, ~12 , and the rigid body rotation, a, can be computed by 

[51] : 

and 

(22) 
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t
2 = x2 + y2 (refer to Fig. 14) 
0 0 0 

From Eqs. (16) and (17), the strain and deformation nodal displace-

ments can be related as 

(23) 

in which 

(24) 

(25) 

where 

[G] = [O, 3t2 - 4t + 1, 3t2 - 2t] 

-For general nonlinear problems, the solution algorithm (Newton-

Raphson method) is based upon the application of a small increment of 

load. For this technique, it is necessary to relate the rate of 

change of force with displacement, i.e., the tangent stiffness . From 

Eq . (23) the rate of strain, ~e, can be found as 

(26) 
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or 

Once the strains are known, the stresses are computed by the constitu-

tive law [46]. The stress-strain relationship for the beam material 

will be restricted to elastic-perfectly-plastic material laws [46) or 

E = {E 
T 0 

if lal <a or a· Ila< O - y 

otherwise 

where E is the modulus of elasticity, a and a are the corotational y 

stress and yield stress, respectively . 

(27) 

(28) 

Using the principle of minimum potential energy [46], the nodal 

forces can be found as 

(29) 

where V is the volume of the element. The rate form of these nodal 

forces is found as 

(30) 
v v 
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where, from Eqs. (25) and (26), 

(31) 

The deformed tangent stiffness [kd]T can be expressed by the fol­

lowing equation: 

(32) 

The first term of the right-hand side of .Eq . (30) becomes [kGd] {~dd} 

and the second term will give ([k
0

d] + [~d]){~dd} . (Explicit formula-

tions for each term will be given presently.) The matrix [k d] is 
0 

known as the small displacement stiffness matrix or the conventional 

stiffness matrix; [kGd] is known as the initial stress stiffness matrix 

or the geometric stiffness matrix, which depends linearly on the defor­

mation nodal displ~cements ; and [kLd] represents the large displacement 

stiffness matrix which depends on quadratic terms of the deformation 

nodal displacements . The updated Lagrangian strain approach makes the 

strains and rotations in the local system (updated Lagrangian coordinate 

d system) small enough (for reasonably small increments) that [~ ] can 

be omitted [50,52] . Eq . (32) can then be reduced to 

(33) 

and also 

(34) 
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The following definitions are made i n order to obtain the expres­

sions for [k
0
d] and [kGd]. 

P. = f crdA 
l. A 

(35) 

M. = f aydA 
l. A 

(36) 

(EA)Ti = f ETdA 
A 

(37) 

(EK) Ti =. f ETydA 
A 

(38) 

(EI)Ti f 2 = ETy dA 
A 

(39) 

where i = 1,2 denotes t = 0 and 1, respectively and A refers to the 

beam cross- sectional area . The quantities P. , M., (EA)T., (EK)T.' and 
l. l. l. 1 

(EI)Ti are assumed to be linear functions of t, for example, 

(40) 

(41) 

The small displacement stiffness matrix is obtained by evaluati~g 

the integral (see Eq. 30). 

[k d] = f 
0 v 

(42) 

Using the definitions of Eq. (37) - (39) gives 
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1 
- ~ (EK)T2 

1 
- ~ (EK)T2 

1 
QN ((EI)Tl + 3(EI)T2) 

(43) 

The geometric stiffness is obtained by evaluating the first integral 

in Eq. (30) with appropriate substitution of Eq. (31) with the defini-

tions in Eq. (35) and (36). 

0 

[k d] QN 0 
G = 60 

0 

4.2.4. Layering Technique 

0 0 

(44) 

The integrals in Eqs. (35)-(39) must be evaluated numerically since 

the cross section may be partially plastic. Numerical methods are 

introduced to calculate the strains and stresses in different layers of 

the cross section. The cross-sectional area is correspondingly divided 

into a number of layers over the depth as shown in Fig. 15. The number 

of layers used must be sufficient to follow the variation of material 

properties and stress over the depth. Each layer is assumed to have 

uniform material properties and the strain is evaluated at the centroid 

of the layer. For elastic-perflectly-plastic material if the strain, e, 

exceeds the yield strain, e , then the stress will be equal to yield 
y 

stress and (EA)T, (EK)T, (EI)T will become zero. If the entire cross 

section is at yield, the maximum load at this location has been reached 
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y 

Figure 15. Typical layering system for the H pile 
about strong axis and weak axis. 
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and the tangent stiffness for additional displace.ment increments is 

zero. 

The total deformation nodal force in Eq . (29) can be evaluated 

(after introduction of [B] from Eq. (26) and the definitions in Eq. (35) 

and (36)) as 

{fd} = [AL] {p} + (ANL] {p} (45) 

· where 

pl 

{p} = p2 (46) 
Ml 
M2 

1/2 1/2 0 0 

[AL] = 0 0 -1 0 (47) 

0 0 0 1 

0 0 0 

0 0 (48) 

0 0 

The nodal forces, {f}, in the local system can be obtained from the 

deformation nodal forces, {fd}, through equilibrium of the element, as 

(49) 
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f2 = -f = 
(f/ + f3 d) 

5 ~ 
(50) 

f3 = f d 
2 

(51) 

f6 = f d 3 (52) 

or 

{f} = [R] {fd} (53) 

where 

-1 0 0 

0 1 1 

~ ~ 
[R} = 0 1 0 (54) 

1 0 0 

0 
1 1 

~ -~ 

0 0 1 

The increment of nodal forces in local coordinates can be obtained from 

Eq. (53) as 

(55) 

The transformation of deformation nodal displacements, {~dd}, can be 

derived by equating work expressed in deformed coordinates to work ex-

pressed in local coordinates as (principle of contragradience). 
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(56) 

Let [T] be the transformation matrix from local coordinates to global 

systems and be defined as follows: 

cos(a + po) - sin(a + ~ ) 0 0 0 0 
0 

sin(a· + po) cos(a + ~o) 0 0 0 0 

0 0 1 0 0 0 
[T] = (57) 

0 0 0 cos.(a. + ~o) - sin(a + ~o) 0 

0 0 0 sin(a + ~o) cos(a + ~o) 0 

0 0 0 0 0 1 

The nodal forces and displacements in the global system can be related 

to the local system as 

{F} = [T] {f} (58) 

{d} = [T]T {D} (59) 

Differentiating Eq. (SS), the incremental nodal forces in t he global 

system can be found: 

{M} = [ ~T] {£} + (T] {6.f} (60) 

Since the updated Lagrangian (temporary stationary) method was applied, 

[6.T] is zero and Eq. (60) becomes 

{M} = [T) {6.f} (61) 

Substituting Eqs. (34), (SS), and (56) into Eq . (61) yields the tangent 

stiffness in the local and global systems, [k]T and [K]T' respectively: 
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{MJ = [K]T{lill} (62) 

where 

[k]T = [R] [kd]T[R]T (63) 

[K}T - [T] [k)T[T] T (64) 

Thus, the tangent stiffness matrix for beam-column element, [K]T' was 

derived by using an incremental formulation approach. One must keep 

in mind that [K]T can be applied for only small displacement increments. 

4.2.5 . Soil Model 

4.2.5.1. Modified Ramberg-Osgood Model 

The soil response is assumed to be nonlinear . The nonlinear char­

acteristics are expressed by the concept of soil resistance versus 

displacement, such as f-z, q-z, p-y curves. Fig . 16 shows a typical 

representation of resistance-displacement curves in vertical or lateral 

directions. A set of f-z, q-z and p-y curves are formed on the basis 

of criteria presented in Section 3.2. These curves can be approximated 

by various mathematical formulas. The most frequently used mathematical 

functions are parabolas, hyperbolas, splines and the Ramberg-Osgood 

functions (53-57]. A general function similar to the Ramberg-Osgood 

model for simulation of resistance-displacement curves will be used 

here . This model offers certain advantages over the other models and 

also includes the commonly used hyperbola as a special case . According 

to this model, a function can be approximated by a four-parameter curve 

as 
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Figure 16. Simulation of resistance-displacement curves by 
modified Ramberg-Osgood model. 
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p = 
(E . - E f)y 

Sl. s + E 

(Esi - Esf)y n )l/n sfy 

Pu 

E . = initial tangent modulus 
Sl. 

E
8

f = final tangent modulus 

p = generalized soil resistance 

= ultimate soil resistance 

n = shape parameter 

y = generalized displacement 

(65) 

The expression for the tangent modulus is obtained by differentiating 

Eq. (65) with respect to displacement, y: 

(66) 
(E . - E f)y 

Sl S 

Details of evaluation of the parameters together with a computer code 

are given by [58] . Fig . 17 illustrates a set of curves which come from 

Eq . 65 to show various nondimensional forms of the modified Ramberg-

Osgood model. 

4.2.5.2 . Soil Springs 

Fig. 18 shows a l~near spring with spring cons~ant k under a load 
s 

of f. The spring deflects by the amount d under the load. The equi-

librium equation or load-displacement relation for the loaded spring 

can be obtained by using the minimum potential energy 
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f 

! 
k

5 
= SPRING STIFFNESS 

Figure 18. Linear spring under an applied force f. 

Figure 19. External _and internal forces and displacements 
acting on the pile element. 



where 

f = k d 
8 
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k g the stjffness of the soil spring element s 

(67) 

If nonlinea~ soil behavior is considered, then the spring stiffness 

is not constant and instead is a function of displacement. Only the 

lateral spring element will be discussed in detail here since the others 

would follo~ the same derivations. As discussed in the previous section, 

a set of p-y curves can be represented by the modified Ramberg-Osgood 

model as shown in Fig. 17. The lateral soil resistance per unit length 

of pile, p, is assumed to be uniformly distributed on the top half of 

the element and dependent only upon the displacement at the top node and 

distributed similarly on the bottom half of the pile element. Fig . 19 

shows the assumed distribution for the lateral soil resistance per unit 

length . In this figure, the following quantities ar e illustrated . 

i, = pile element length 

!:lf s = force· increment acting on the node 

L\p = res i stance increment per unit leng~h 

ad = di splacement increment 

From Fig. 19, 

(68) 

(69) 
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For incremental loading, the relationship between soil resistance-

displacement can be expressed by Eq. (66) as 

Ap = Ehzt Ad <io) 

where 

Ehzt = tangent modulus from p-y curve 

With Eqs. (68), (69), an~ _(70), the tangent stiffness of the nonlinear 

lateral spring element, ~st' can be e)cpressed as follows: 

(71) 

where 

(72) 

If the same approach is used on the nonlinear vertical and point .spring 

elements, the tangent stiffness of the nonlinear vertical and po~nt 

spring elements, kvst and kpst' respectively, will be given as follows: 

(73) 

(74) 
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where 

E = tangent modulus from f-z curve vzt 

E = tangent modulus from q-z curve pzt 

c = pile perimeter 

~ = effective pile tip area 
(for H pile, treated as rectangular section) 

Combining the tangent stiffness of the spring elements· with the tangent 

stiffness of the beam- column element in the local system yields 

(75) ' 

Transforming [k]T to the global system yields [K]T (see Eq . (64)). 

4.3. Basic Nonlinear Solution Techniques 

The solution of nonlinear problems by the finite element method 

is usually attempted by one of three basic techniques: incremental or 

stepwise procedures , iterative or Newton methods, or increment-iteration. 

or mixed procedures. The increment-iteration procedures will be adopted 

in this investigation as shown in Fig . 20. Here the load is applied 

incrementally, and, after each increment, successive iterations are 

performed until convergence to a specified tolerance occurs . Two ver-

sions of the numerical procedure·, the basic Newton-Raphson method and 

the modified Newton-Raphson method , are widely used . The choice of any 

)~~ of t hese methods depends upon its computational efficiency when 

applied to the particular nonlinear problem under consideration . The 

basic Newton-Raphson method will be applied to this problem. 
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Figur e 20. Increment-iteration or mixed procedure 
(Newton-Raphson solution of the equation F=f(D)). 
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In the basic Newton-Raphson procedure the most current information 

available concerning the structure is used to calculate the incremental 

quantities at any step. In other words, the tangent stiffness matrix 

at the start of each iteration is used to estimate the next incremental 

quantitites. It requires the formation of the element tangent stitt-

ness transformed into global coordinates at the start of each iteration. 

Suppose that currently {e.i}, {cr . i}, {f.i}, {F . i}, {X.i}, {Y.i}, 
J J J J J J 

{D.i}, {d.i}, and {P . i} are given at the jth increment and the ith 
-J J J 

iteration. The condition i = 1 and j = 1 is the i nitial stage in the 

1 1 nonlinear problem. Thu~, except for {X1 }, {Y1 }, the above vectors 

are null. To g~nerate the i+.lth iteration by the updated Lagrangian 

method, 'the following steps will be followed. 

Step 1 : Calculate the current unbalanced forces in the global 

system: 

where 

{ A~ . i+l} -- {F } {F i} 
Ll.CJ j+l - j 

{Fj+l} = forces for j+lth load increment 

{F.i} =forces from previous iteration i 
J 

(76) 

Step 2: Establish the current local coordinates x,y for the ele-

ment at hand . 

Step 3: Generate the structural tangent stiffness in current 

coordinates {X .i} and {Y.i}. 
J J 

(a) establish ET at each integration point through the cross-

section (with the current strain information) 



(b) 

(c) 

(d) 
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perform (EA}T, (EK)T, (EI)T integrals at each end 

determined [k .i], also with current [p.i}, find [kG· .i] 
OJ J . J 

generate [k.i]T by adding [k .i]T 
J SJ 

transform [kj i]T into global coordinates to get [Kj i]T (e) 

(f) assemble {Kji]T into the structural tangent stiffness l:[KjilT 

Step 4: Solve for incremental displacements with current unbalanced 

forces {AFj i+l}: 

Step 5: Update coordinates . 

(a) 

(b) 

update 

update 

d . {X i+l} coor 1nates, . = 
J 

displacements, {D.i+l} 
J 

Step 6: Calculate the updated strains and stresses. 

(a) 

(b) 

(c) 

(d) 

(e) 

find {d~ i+l} from Eqs. (18), (20), (21), (22) 
J 

·+1 
compute {~. 1 } from Eq. (23) 

J 

compute {~e.i+l} = {e.i+l} - {e.i} 
J J J 

"+l 
compute {do .1 } from Eq. (27) 

J 

~ompute {o. i+l} = {cr . } + {aa.i+l} 
J J J 

Step 7: Compute element nodal forces in the local system 

(77) 

(a) perform area integral to find {p . i+lJ from Eqs. (35) and (36) 
J 

d i+l (b) compute {f. } from Eq. (45) 
J 

·+1 
(c) compute {f .1 

} from Eq. (53) 
J 

Step 8: Find the equilibrium external nodal forces in global co-

ordinates: 

(78) 
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Step 9: Test for convergence. If not satisfied, return to Step 1 . 

Otherwise go to the next increment of load {Fj+
2

}. Each step of this 

algorithm is tangent to the load versus displacement curve, as suggested 

before. The process is interpreted graphically in Fig. 20. 

4.3.1 . Convergence Criteria 

In the adaptation of the basic Newton-Raphson method, specifica-

tion of certain convergence criteria is necessary to terminate the 

iterations at a load increment. Covergence could be defined in terms 

of the relation between load imbalance and the total externally applied 

load .. A criterion based on displacements is preferable [SO]. In this 

work, convergence is assumed to have occurred when the maximum displace-

ment increment is less than a specified value (typically 0 . 001 ft): 

IADlmax < 0.001 ft (79) 

4.4. Verification of Model 

Based on- the theory outlined above, a computer program Yang 5 (or 

YANG 5) has ·been developed to solve the nonlinear pile-soil problems . 

A number of examples have been analyzed to establish its reliability. 

Three problems with analytical solutions were first solved: (a) a beam­

column problem was used to check geometric nonlinearity of the pile; 

(b) a short, thick column problem was used to check material nonlinear­

ity, and (c) a simple soil problem was used to check soil nonlinearity. 

Finally, the data obtained from two experimentally loaded piles tested 

in the field were compared with the analytical results . 
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4.4.1. Beam-Column Problem 

Figure 21 shows a beam-column with a concentrated lateral load, Q, 

acting on the midspan. To avoid material nonlinearity, the yield strain 

e and yield stress are taken to be very large. The theoretical dis­
y 

placement at the midspan 6 can be evaluated by solving the classic dif-

ferential equation for beam columns [59) to obtain (refer to Fig. 21). 

6 = ~ 3(tanu - u) 
48EI 3 

u 
(80) 

p 
er (81) 

u=~ r;r ...JP er 
(82) 

Equation (80) indicates that the displacement at the midspan, 6, is 

equal to Qi3/48EI, the deflection that would exist if only Q were acting, 

multiplied by an amplification factor that depends on the ratio P/P . er 

If P/Pc_r approaches unity, then the displacement at the midspan of the 

beam-column increas~s without bound. Figure 22 shows the relation 

between Pando, if Pis .allowed to increase. The load-displacement 

relation is not linear. This is true regardless of whether Q remains 

constant (solid line) or increases proportionally with P (dashed curve). 

The displacement of a beam-column is, thus, a linear function of Q but 

a nonlinear function of P. The results obtained by running the Yang 5 

computer program (two beam elements) are also plotted in Fig. 22. 

Significant differences between these results and the classical beam 
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USE HP 14 x 73 

DATA A= 21.15 in2 

bf = 14.586 in 
d = 13.64 in 

tf = 0.506 in 

tw = 0. 506 in 
I = 721.8044 in4 
x-x 

z = 117 . 1082 in3 
x-x 

C = perimeter = 4.7 ft 

Per = critical load = 3710.377 kips 

Figure 21. Beam-column with a concentrated load, Q. 
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column solution occur only when P approaches Per· Better results could 

be obtained by increasing the number of elements, e.g., eight elements 

in Fig. 23, by decreasing the load increment, and/or by reducing the 

tolerance ·of convergence. The reader will also note that, . because dis-

placements became large near P , the classical solution is increasingly er 

invalid. 

4.4.2. Short Column Problem 

Figure 24 shows a short, thick column with its material properties. 

A short, thick column is used in this example so that the geometric 

effect can be neglected and only the material nonlinearity will be con-

:;idered .. 

Simple plastic theory assumes that a member subjected to bending 

moment will sustain a certain limiting bending moment value (the "plas-

tic moment," M ) that is dependent only on the geometrical ·properties p . 

of the cross section and the yield stress of the
0

material. When this 

maximum moment is approached, curvature increases infinitely and a 

plastic hinge occurs. When enough hinges have formed to produce a 

mechanism, the structure will fail . If a member is subjected to the 

combined action of bending moment and axial . forces, the available plas-

tic moment capacity is reduced from the full value of M to a lesser 
p 

value that can be designated as M Theoretical analyses have been pc 

presented in several books [60-62] and formulas of M for different pc 

cross sections have been derived. Figure 25 illustrates stress patterns 

on a cross-sectional element as the moment increases (a) without axial 

force and (b) with axial force. 
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i 21 !NI ~ 42 IN. 

! A A 
(b) 

(a) 

o, KSI 

0.0012 
(c) 

DATA: A = 210 in~ 
I = 7717 . 5 in~ x-x 
Zx-x = 1102. 5 in~ 

c = 5. 1667 ft 

c.y = 0.0012 in.fin. 

a y = 36 KSI 

PY = 7 560 k i ps 

My = 2205 ft-kips 
M = 3307.5 ft-kips 

p · 
tiy = 0 ~ 0042 (pure axial load) 
ey = 0.0048 (pure moment) 

ep = 0.0072 (pure moment) 

Figure 24. (a) A short column subjected to applied load. 

(b) Cross section A-A. 

(c) Stress-strain relation. 
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(b) WITH AXIAL FORCE 

Figure 25. Stress patterns on a cross section as the moment 
increases. 
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In this example problem, a rectangular cross section is used . The 

corresponding formula for M can be derived as pc 

where 

P = a bd = a A y y y 

and 

(84) 

(85) 

As the material goes into the plastic range, the tan~ent stiffness of 

the element will be reduced. 

Five different applied load cases are analyzed in this example 

(see Fig. 24 for the definition of the variables): 

Proportional Loading 

Case (1) 

Case (2) 

Case (3) 

Case (4) 

M e = - = ~ (pure moment) 
p 

e = 1.327' 

e = 0.467' 

e = 0 (pure axial load) 

Nonproportional Loading 

Case (5) Displacement increased to 0 and A held equal to 
p 

zero, then A increased as e is held· constant. 

The results obtained from the above load cases are plotted in Fig. 

26. Theoretical values of M from Eq. (83) are sb:own . The computer 
pc 
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program gives satisfactory agreement ~ith theoretical values. Case (5) 

illustrates that the moment decreases as the rotation is held .constant 

and the axial deformation is increased. 

4.4 . 3. Soil eroblems 

Three soil problems were used to check the soi l material nonline­

arity analysis in three different parts: (a) lateral spring· element , 

(b) vertical spring element, (c) point spring element. For example, 

suppose an HP 14 x 73 pile was embedded below the ground as shown in 

Fig. 27. The soil response can then be observed by taking the pile to 

be rigid. Theoretical displacements and soil resistance follow the p-y 

curve path. For a specified load, the displacement will be obtained 

from the Newton-Raphson solution algorithm. Figure 28 shows the itera­

tion path which the· computer solution followed for a horizontal load of 

1000 kips. Several load~ng cases hav~ been studied. Results for the 

vertical springs are presented in Fig. 29 for a vertical ioad of 3000 

kips and in Fig. 30 for the point spring with a vertical load of 10 

kips . Results obtained from Yang 5 are consistent with the expected 

theoretical results as shown in Table 7 . . The theoretical results were 

obtained by considering a rigid pile with applied load acting, for 

example, for the lateral springs, p = 2P/L (kpf) (see Fig. 27). 

4.4.4. Experimentally Loaded Piles 

Two pile tests are given in [33,63]. The first is a vertical l oad 

test on end-bearing steel H-piles driven about 40 ft through sand and 

~ ·~ ·~1 . The second is a full-scale lateral load test on drilled piers 

in hard overconsolidated clay. The observed values from those full-scale 

load tests will be compared to values predicted by the Yang .S program. 
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Figure 27. HP 14 x 73 pile used to check soil spring response. 
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Table 7. Comparison between theoretical -and numerical results. 

Specified Soil Resistance (p, f or q) 
Load/ 

Case Spring Displacement Theoretical Numerical 

1 Later; al 1000 k 133.33333 kpf 133. 33331 kpf 

Lateral 2000 k 266 . 66667 kpf 266.66663 kpf 

Lateral 3000 k 400.00 kpf 400.00 kpf 

2 Vertical 1000 k 14.18440 ksf 14.18497 ksf 

Vertical 2000 k 28.36879 ksf 28.36912· ksf 

Vertical 3000 k 42.55319 ksf 42 .55364 ksf 

3 Point 10 k 68.08510 ksf 68.08180 ksf 

Point 20 k 136 . 17021 ksf 136.16797 ksf 

4 Lateral 3 ft 154 .99999 kpf 154.99998 kpf 
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4.4.4.1. Load Transfer in End-Bearing Steel H Piles 

In Ref. [63], the increase in the load-carrying capacity of an 

end-bearing pile due to load transferred to the surrounding soil by 

friction was experimentally studied. Site conditions, pile driving, 

and instrumentation were examined. The strairi-gauge readings .were a~a-

lyzed to determine the distribution of the load transferred along the 

piles. The piles were . loaded and unloaded in increments to 150 kips, 

300 kips, 450 kips, and 600 kips. A plot of pile load as a function of 

depth is shown in Fig. 31. From curves of the type shown there, the 

true elastic shortening can be obtained and the tip displacement cal-

culated by subtracting the elastic shortening from the observed butt 

displacement. Curves of tip displacement as a function of load for 

HP 14 x 89 and HP 14 x 117 test piles are duplicated in Fig. 32. From 

these two figures (31 and 32) two sets of f·z curves anq q-z curves (one 

set for each pile) can be con.structed by the following procedures: 

(1) ·From Fig. 31, measure the load transferred tQ the pile at each 

specified depth (refer to Fig. 33) 

(2) Calculate the elastic shortening of each pile segment: 

where 

p 
ave 

e=~ 

p 
ave 

P. + P. l 
1 1-= ----2 

(86) 

(87) 
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E = modulus of elasticity of the pile 

A = pile cross section area 

P. l = 
1-

axial load on the top node of 

P. = axial load on the bottom node 
1 

Calculate the relative pile displacement 

each segment with respect to the soil: 

L. 
zi = L f 1 

Edl + tip displacement 
0 

the element i 

of the element 

at the center of 

i 

(88) 

where l means the elastic shortening was calculated first at 

the bottom element and then accumulated to the ith element. 

Find average shear resistance (f . ) at each pile segment : 
i ave 

where 

f. 
i ave 

P. l - P. 
1- l. = ---,.----C. L. 

1 1 

C. =pile perimeter 
l 

L . = pile- segment length 
1 

(89) 

From these f. and z . values at pile segment i, plot a set 
1 ave 1 

of f-z curves. 

(6) From Fig. 32, the q-z curve can be produced by dividing the 

load on the tip by an effect i ve tip area to get q: 

q = 
p 
bottom 

AB 
(90) 
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AB = effective tip area. For an H pile a rectangular 

cross section is used . 

Since all the pile load tests were held at the same site, the final 

set of f-z curves was taken as the average of the f-z curves from the 

HP 14 x 89 and HP 14 x 117 . Pile lengths were 44 ft ·(HP 14 x 89) and 

44.S ft (HP 14 x 117) . Soil parameters of th.e modified Ramberg-Osgood 

curves are obtained by approximately fitting the irregular shape of the 

average f-z curves and q-z curves . The load-settlement curves, both 

observed and predicted values, are plotted in Fig . 34 (HP 14 x 89) and 

Fig. 35(HP14 x 117), respectively. The results· calculated from the 

computer solution (Yang 5) are a fairly good approximation of the re­

sults obtained in the experiment. 

4.4.4 ; 2. Lateral Load Tests on Drilled Piers in Stiff Clay 

Two drilled piers were selected from the laterally loaded pile 

tests conducted by Bhushan et al. [33). Measurements of horizontal 

ground line displacements were made for two piers . Soil properties were 

det~rmined by drilling two borings at each test site and testing the 

soil · samples in the laboratory. The piers were reinforced with No . 11 

reinforcing bars providing about 3% steel area and having a diameter of 

4 ft and an embedded length of 15 ft. The soil condition is .summarized 

in Table 8. 
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Table 8 . Soil characteristics. 

Avg. undrained 
£50 Pier Site Soil Total Unit3 shear str2ngth Depth 

No. No. Type Wt. lbs/ft lbs/ft % ft 

1 A Sandy 130 5500 0.96 0 ,.., 9 
Clay 
(CL ·-
CH) 

2 B Sandy 130 4750 o. 72 0 ,., 16 
Clay 
(CL) 

Two two piers . (Piers 1 and 2 in Table 8) were constructed with a 

spacing of about 20 ft and were loaded by jacking between them . . A dia-

gram of both test arrangements is shown in Fig. 36 . The load was 

applied to the piers through a circular collar, and the poi nt of appli- . 

cation of the load was assumed to be the midheight of the collar, . 9 in. 

above the ground surface. Displacements of the piers were measured by 

the dial gauges located 1 ft above ground surface . Loads were app~ied 

by a 600-kip hydraulic j ack in 20-50 kip increments [33]. 

The soil properties are characterized by lateral soil resistance-

displacement (p- y) curves . A set of p-y curves can be generated by 

using the criteria fo t constructing the p-y curves i n very stiff clay 

following· the procedure outlined in Section 3. 2 . 1. Based on theoretical 

considerations and parametri c study, values of c1 = 2.0, J = 2.0 and 

n = 0 .5 were selected for computing the p-y curves [33] . 
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The above results must be approximated by a modified Ramberg­

Osgood model. A set of p-y curves was constructed and plotted in non­

dimensional form as shown in Fig. 37. From this curve, the initial 

tangent modulus is infinite, and p is equal to pu when y ~ 4y50 . A set 

of modified Ramberg-Osgood curves is also plotted in Fig. 37 to compare 

with the Reese p-y curves . Among these modified Ramberg-Osgood curves, 

the n = 1 curve was selected to approximate the Reese p-y curves . 

The predicted displacements at the top of the pier are obtained 

by running the Yang 5 program. The results are plotted in Fig. 38 (Pier 

No. 1) and Fig. 39 (Pier No. 2). Comparison between the predicted 

values obtained from Yang 5 and another computer program, COM 622 (65.], 

show that the results are certainly adequate and quite close to the 

observed values. 



l.O r 
SLOPE = 0.0 

J 
= 1.0 

I /I 
0 .9 

0.8 

0 .7 

0. 6 

::::J 
0.. ......... 0 . 5 
0.. · - -

0 . 4~ U/ / I 

REESE CU RV E 
--o-- t-llD. RAMBERG-OSGOOD MODEL, n = 1.0 

0.3 ~ Ill ---6- MOD. RAMBERG-OSGOOD .MO DEL, n = 1.5 
-o- MOD. RAMBERG-OSGOOD MODEL, n = 2.0 

0. 2 ~" IN ITIAL SLOPE= 1.0 

I /I 
FINAL. SLOPE = 0.0 

0 . 1 

0.0 
0 1 2 3 4 5 6 7 

YIY50 

Figure 37 . Compa r ision bet ween t he Reese (p- y) curve a n d mod if i ed Ramber g - Osgood mod el 
(nond imen sion a l ) . 

f-' 
f-' 

°' 



400 

300 

(/') 
c... ...... 

~ 200~ //a/' I 
<( 
0 
_J 

_J 
<( 

f ~ MEASURED VALUES c:::: 
w 

--0-- YANG 5 VALUES I-
<( 

--0- COM622 VALUES 
_J 100 

0 ~o.~o~~~~~~~:---~~~~~---::-1-:--~~_.1~~~~ 
0.5 l.O 1.5 2.0 2.5 3. 0 

GROUND LINE DISPLACEMENT, IN . 

Figure 38. Load-displacement cur ves , pier 1. 

....... 

....... 
-...J 



(/') 
0... 
....... 
::..:: .. 

400 

300 

~ 200 
0 
_J 

_J 

ct: 
0:: 
LU 
l­
et: 
_J 

100 

~ MEASURED VALUES 
--o-- YANG 5 VALUES 
---{)- COM622 VALUES 

o---~~~_._~~~__..~~~~-'-~~~_._~~~~..__~~~_, 

0.0 0 . 5 l.O l. 5 2.0 2.5 3.0 
GROUND LINE DI SPLACE MENT, IN . 

Figure 39. Load-dis placement cur ves, pier 2. 

f-' 
f-' 
CXl 



119 

5. NUMERICAL RESULTS 

An idealized ·mathematical model of an integral abutment bridge is 

shown in Fig. 12. The left part of the model, shown in Fig. 40, with 

pile embedded in Iowa type soils, will be analyzed in this section. 

5 . 1 . Pile Description 

Steel H piles are used extensively to carry both live and dead loads 

either as end-bearing or friction piles in foundations of bridges, piers, 

buildings, and other major structures. In Iowa, the most common type of 

H pile used in bridge.s according to engineers at the Iowa D.O . T. is 

HP 10 x 42 with an embedded length of about 40 feet . This type of 

pile will be used to evaluate the ultimate vertical load after lateral 

pile displacement has occurred . 

5 . 2. Soil Description 

Soil properties should be investigated first by test boring at the 

bridge site, by measuring penetration resistance, and by laboratory 

testing on intact samples. If a complete investigation of the soil 

properties i s not feasible, empirical relationships may be useful. 

These empirical data which are obtained by numerous test results and 

long-term observations are expected to provide reasonable and conserva.tive 

values. 

In consultation with Iowa Department of Transportation engineers, 

several typical Iowa soils were selected by studying the information in 
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Appendix 9.3 and Tables 9 and 10 [65). These typical Iowa soils and 

their significant strength characteristics are shown in Table 11. 

For each type of soil, p-y, f-z and q-z curves will be generated 

by following the procedures listed in Section 3.2. Examples of p-y, 

f-z and q-z curves corresponding to Iowa soils are given in Tables 12 

and 13 for clay soil and· sand respectively (refer to Section 3 .2 for 

notations). 

For the present work, since the Reese p-y, f-z, and q-z curves 

have infinite initial tangent modulus and zero final tangent modulus, 

a modified Ramberg-Osgood equation is used to model the soil resistance-

displacement curves. A correspondence should be made between the Reese 

p-y, f-z, and q-z curves which w~re obtained above and a set of modified 

Ramberg-Osgood models. Nondimensional curves of the Reese equations 

and the modified Ramberg-Osgood equations are presented in Figs,. 41-46 . 

For example, the nondimensional Reese curve in Fig. 41 has infinite 

ini tial tangent modulus and zero final tangent modulus with ultimate 

soil resistance equal to f . Knowing the above three parameters, a max 

set of modified Ramberg-Osgood models has been .plotted with different 

initial slopes. Decisions could be made immediately to pick up a modi-

fied Ramberg-Osgood model with slope = 10 and n = 1.0 which fits the 

Reese curve closely. The soil parameters are represented by nondimen-

sional modified Ramberg-Osgood model s i n different types of soils, for 

clays and sands, and are given in Table 14 . 
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Table 9. Cohesionless soils - typical values. 

Natural Unit Submerged Unit 

Sands and Weight, y, Weight, y', Angle of 
Gravels lb/ft3 lb/ft3 friction, (j> 

Loose 90 ,.., 125 55 ,.., 65 30° 

Medium 110 ,., 130 60 ,., 70 35° 

Dense 110 ,.., 140 65 ,., 80 40° 

Tab1e ·10 . Cohesive soils - typical values. 

Natural Unit Submerged Unit 
Cohesion, Weight, y, Weight, y', 

Clay Cu, lb/£t2 lb/£t3 lb/£t3 

Very stiff Over 3000 120 ,., 140 60 ..., 80 

Stiff 1500 ,.., 3000 115 ,.., 135 55 ,., 75 

Fi rm 750 ,.., 1500 105 ,., 125 45 ,.., 65 

Soft 375 ,.., 750 90 ,.., 110 30 ,., 50. 

Very soft Under 375 90 ,., 100 30 ,., 40 
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Table 11. Typical Iowa soils. 

Mean Values Natural Unit Undrained 
of Blow Weight, '/, Cohesion, ~gle of 

Soil Type Count, N lb/ft3 Cu, lb/ft2 Friction, cp 

Soft clay 3 100 405 

Stiff clay 15 120 1569 

Very stiff clay so 130 5000 

Loose sand 5 110 30° 

Medium sand 15 120 35° 

Dense sand 30 130 40° 
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Table 12. f - z , q-z and p-y curves for clays. 

Very Stiff 
Soil Type Soft Clay Stiff Clay Clay 

Reduction factor, a 1.0 0.5 0.5 

f max = aCu ksf 0.405 0 . 785 0.25 

Mean value of z , ft 0 .021 0 .021 0.021 c 

<luiax' ksf 3.645 3 .645 3.645 

t:50 0.02 0 .01 0.005 

cl 2.5 2.5 2. 0 

b, ft 0 .81 0 . 81 0.81 

Y50 = C1bt:50 , ft 0.0405 0.0203 0.0081 

Pu at x = 0 "' 2 ft 1.5512 5.5761 32.3606 

p at x = 2 ,., 4 u ft 2.1182 7. 3355 36.45 

Pu at x = 4 ~ 6 ft 2.6852 9.1029 36.45 

Pu at x = 6 "' 8 ft 2.9525 10.8663 36.45 

Pu at x = 8 - 40 ft 2.9525 11.4380 36.45 
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Table 13. f-z, q-z and p-y curves for sand . 

Soil Type Loose Sand Medium Sand Dense Sand 

f = 0.04N, ksf 0.20 0.60 1.20 max 

Mean value of zc, ft 0.033 0.033 0. 033 

<luiax' ksf 40.0 120.0 180.0 

J 200 600 1500 

k 2 + ~/2) 3.0 3. 69 4.60 = tan (45° p 

k 2 - ~/2) 0.33 0.27 0.22 = tan (45° a 

k = 1 - sin<!I 
0 

0.5 0.43 0.36 

Cl 100 . 17.5° 20° 

~ 60° 62.5° 65° 

Pu at x = 0 ,.... 2 ft 1.032 1.891 2.980 

Pu at x = 2 ..., 4 ft 3.175 6.231 10.076 

(Note : p will be different at different depths. Only two values of 
u p are presented here.) u . 
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Table 14. Soil parameters in low.a soils. 

Very stiff 
Model Parameters Soft Clay Stiff Clay Clay Loose Sand Medium Sand Dense Sand 

f-z f max' 'ksf 0 .405 0 . 785 2.5 0.2 0 .6 1.20 

E si' kcf 192 .86 373.81 1190 . 48 . 60.61 181 .82 363 . 64 

Esf·' kcf 0.0 0.0 0.0 0 . 0 0.0 0.0 

n 1.0 1.0 1.0 1.0 1.0 1.0 

q-z ~ax' ksf 3.645 14.121 45.0 40 . 0 120.0 180.0 

E si' kcf 1736 6767 21429 12121 . 21 36363.64 54545. 45 

Esf ' kcf 0.0 0.0 0.0 0 . 0 0.0 0.0 

n 1.0 1.0 1.0 1.0 1.0 1.0 

p-y Pu' kpf 1.5512 5.5761 32 .3606 1.032 1.891 2.980 
x = 0 - 2 ft 

E si' ksf 38.30 274 . 68 1997 . 57 32.593 106.667 288.889 

Esf' ksf 0.0 0.0 0 . 0 0.0 0.0 0.0 

n 1.0 1.0 2. 0 3 . 0 3.0 3.0 

p-y Pu' kpf 2 . 1182 7.3395 36.45 3 . 175 6.231 10.076 
x = 2 - 4 ft 

E si> ksf 52.3-0 361 .55 2250 65.185 213.333 577. 778 

Esf' ksf 0 . 0 0.0 0.0 0 . 0 0 .0 0.0 

n 1.0 1.0 2.0 3.0 3 .0 3.0 
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5.3 . Loading Pattern 

The bridge with integral abutment is subjected to dead and live 

loads during and after thermal expansion or contraction. The worst 

situation is assumed to occur after thermal expansion or contraction 

has occurred and the bridge is subsequently loaded to its maximum ver· 

tical load. A typical pile in an integral abutment bridge will be ana-

lyzed by first applying a horizontal displacement ~ (to simulate the 

induced thermal expansion or contraction) and no rotation (since the 

bridge is much stiff er than the pile) at the top and then applying a 

vertical load V (to simulate the bridge load) until failure occurs (see 

Fig. 47). In this manner, the effect of the horizontal pile top dis-

placement on the pile capacity can be observed. In the Yang 5 program, 

the total till is applied in increments of 0.25 in. while V is held equal 

to zero. Once the total AH is achieved (0, I, 2, or 4 in.), _Vis in­

creased in increments of SK until the vertical load capacity of the pile 

is re.ached. 

The heat transfer analysis is similar for both concrete and steel 

bridges. Steel bridges have higher temperature changes for a number of 

reasons, including the thermal mass of concrete reducing fluctuations and 

the darker color and steel absorbing more heat than concrete does. 

5.4. Results 

Results obtained by running the Yang 5 program will be presented 

here to show the behavior of steel pile embedded in Iowa soils. A set 

of vertical load-settlement curves with specified lateral displacements, 
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t;i (O, 1, 2, 4 in., see Fig. 47), are shown in Figs. 48-53 in which the 

total load is plotted as a function of the settlement of the pile head. 

In these figures, the vertical load-settlement curve for~ (1, 2, or 

4 in.) has been shifted to the origin in an amount 6vH' a second order 

vertical displacement, which is caused by the specified lateral dis· 

placement ~ before loading. The determination of the ultimate pile 

load is, to some degree, a matter of interpretation. In many of the 

pile load tests conducted by the Iowa Department of Transportation the 

ultimate pile load was taken as a vertical settlement of 0.2 inches 

(16). This seems to be a reasonable approach based on many pile load 

tests . Another reasonable procedure (66] that takes accoun~ of the sig­

nificant variables is illustrated in Fig. 54 for typical load-settlement 

curves. Curve (a) represents a pile that slipped or plunged suddenly 

when the load reached a definite value termed the ultimate pile load or 

pile capacity. Curves (b) and (c), on the other hand, show no well­

defined breaks. The procedure which determines the ultimate pile load 

for curves (b) and (c) is illustrated in the figure. The elastic shor­

tening of the pile is computed by means of the expression VL/EA and 

plotted on the load-settlement diagram as line 00'. The line CC' is 

drawn parallel to line 00' with an intercept on the settlement axis 

equal to (0.0125 + 0 . 0083b) ft., where bis diameter of the pile in 

feet. The intercept is a measure of the tip settlement. required to 

develop the capacity. The ultimate load 'is defined as the load at which 

the line CC' intersects the load settlement curve. Based on the above 

procedure, the ultimate pile load Vult was obtained from each of the 

previous curves for the various specified lateral displacements (bridge 
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motions). A set of curves showing ultimate pile load (Vult) versus 

specified lateral displacements, ~' for the different Iowa soils is 

shown in Figs . 55 to 56. Nondimensional forms are given in Fig. 57. 

The deflected shapes of the H pile with specified lateral displace­

ment ~ = 1.0 in. and vertical loads of zero and after ultimate load are 

shown in Figs. 58-63. 

5.5. Behavior of Pile and Soil 

In spite of the extensive research on the resistance of piles to 

lateral and vertical loading, a simple design method that can be uni­

versally applied to any soil or type of pile has not been· established. 

There are many interrelated factors. The dominant one is the pile 

stiffness relative· to soil stiffness and strength. This influences the 

deflected shape and determines whether the failure mechanism is one of 

the rotation and/or vertical translation of a rigid element or is due 

to flexure followed by the failure in bending of a flexible pile . 

In this investigation, failure mechanisms can be generalized .in 

two types: (a) lateral type failure and (b) vertical type failure. 

·Lateral type failure can occur in several modes: {l) buc~ling failure 

of the pile due to large displacement, (2) plastic hinge formation in 

the pile, and (3) lateral soil failure. Usually, lateral failure is a 

combination of all three: large lateral displacement of the pile due 

to inelastic pile buckling and lateral soil failure. Vertical type 

failure can occur with: (1) plastic deformation of the pile caused by 

large pile stresses and (2) soil friction or point bearing failure as 

the pile moves down through the soil as a rigid body. 
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From observiqg the load-settlement curves (Figs. 48-53), it appears 

that most of the analyzed piles failed by the second type (vertical type 

failure). That is, the applied load reached the ultimate soil frictional 

resistance (for sands, soft clay and stiff clay) . The load-settlement 

curves became horizontal as the load reached the ultimate pile load for 

all prescribed lateral displacements. Comparing the deflected shapes 

of the pile before loading and after loading (Figs . 58-59 and 61-63) 

shows that the lateral displaced shapes do not change significantly as 

the vertical displacements increase. This implies that plastic hinge 

does not form or lateral strength is not exceeded before the vertical 

soil failure occurs. The ultimate load capacity determined by the pro­

cedures of Section 5.4 and shown in Figs. 55 and 56 ·are not affected by 

the lateral displacement ~ or caused by thermal expansion or contraction 

of the integral abutment bridge . 

For the soils examined here very stiff clay is the only case in 

which the lateral failure occurs before vertical failure . From Fig. 50, 

the load-settlement curve shows that when ~ = 0 .0 in. the failure is 

simil ar to the pile .in other soil types (sands, soft clay, stiff clay) . 

For ~ = 2.0 in . the applied load was terminated at V = 180 Kips because 

the solution was converging very slowly. A plastic hinge which forms in 

the pile for this case significantly increases the ·number of iterations 

required for convergence. The deflected shapes of the pile before ver­

tical loadi~g and after loading (Fig . 60) show the position of the 

plastic hinge. For this case, the last converged solution was taken as 

the ultimate load. Figure 50 illustrates that this is reasonable . The 

ultimate load capacity for the pile in very stiff clay is affected by 



154 

the lateral displacement induced by thermal expansion or contraction of 

the bridge. 

Lateral type failure did not occur in dense sand . For a pile 

embedded in soil, the critical location for lateral soil failure is O to 

iO ft from the ground· line (refer to pile deflected shapes from Figs. 

58-63). The lateral soil stiffness for very stiff clay is much higher 

than dense sand so that the pile stress induced by the specified lateral 

displacement (~) in very stiff clay is larger than dense sand and 

reaches the yield stress and plastic hinge forms. Since the stiffness 

of the very stiff clay is greater than the stiffness. of other soils in 

the top portion of the pile, the deflected shapes of other soils have 

deeper deflected "S" shapes than . the very stiff clay. 
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6. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

FOR FURTHER STUDY 

6. 1. Summary 

The highway departments of all fifty states were contacted to find 

the extent of application of integral abutment bridges, to survey the 

different guidelines used for analysis and design of integral abutment 

bridges, and to assess the performance of such bridges through the years. 

The survey showed a wide variation in design assumptions and limitations 

among the various states in their approach to the use of integral abut­

ments. The survey also showed that the variations among the different 

states are due largely to the empirical basis for development of current 

design criteria, thereby underscoring the need for a simple, rational 

method of accurately predicting pile stresses . 

The states· that use integral abutments indicated that they were 

generally satisfied with the performance of .the bridges and that they 

were economical . Some problems have been reported, however, concerning 

secondary effe~ts of inevitable lateral displacements at the abutment . 

These include abutment, wingwall and pavement distress and backfill 

erosion. Only a few states noted that any difficulty had been encoun­

tered . Other states reported that solutions have been developed for 

most of the ill effects of abutment movements. They include: 

e additional reinforcing and concrete cover in the abutment; 

• more effective pavement joints which allow thermal movements 

to occur; and 

• positive control of bridge deck and roadway drainage . 
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The length limitations on integral abutment bridges used by the 

different states in 1980 are summarized in Appendix 9 . 1. Many of the 

states have been progressively increasing length limitations for the 

use of integral abutments over the last thirty years. Improvements in 

details have also taken place which generally can eliminate the possi­

bility of serious distress occurring with abutment movements of up to 

1 inch. These progressive steps in the state of the art of integral 

abutment bridge engineering have occurred over the past thirty years . 

primarily as the result of the observance of satisfactory performance 

in actual installations. Very little work, however, has been done to 

monitor the actual behavior of integral abutments except in checking 

for obvious signs of distress in visible elements of the bridge. 

An algorithm based on a state~of-the-art nonlinear finite element 

procedure was developed and used to study piling stresses and pile-soil 

interaction in integral abutment bridges. The finite element idealiza­

tion con.Sists of a one-dimensional idealization for the pile and, non­

linear springs for ~he soil . Important parameters for analysis are the 

pile and soil characteristics. On the basis of review of the literature, 

it was decided to represent pile characteristics by beam-column elements 

with geometric and material nonlinearities and soil characteristics by 

p-y, f-z, and q-z curves (see Section 3.2). An idealized soil model 

(modified Raffiberg-Osgood model) was introduced in this investigation to 

obtain the tangent stiffness of the nonlinear spring elements . 

Incremental finite element updated Lagrangian f ormula~ion including 

material and geometric nonlinearities is used . The scope of the geometric 

and material nonlinear effects is discussed (see Section 4). Explicit 
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forms of the small displacement stiffness matrix and initial stress 

matrix are presented. Several numerical techniques available for the 

solutions of the nonlinear equations are reviewed and the incremental 

and iterative techniques used in the study are discussed in detail . 

The procedure used in the calculation of residual loads and residual 

displacements to satisfy the convergence criteria is also discussed . A 

computer program (Yang 5) has been written based on the finite element 

procedure described . 

Several numerical examples are presented in order to establish the 

reliability of the finite element model and the computer software devel-

_ oped. Three problems with analytical solutions were first solved and 

compared with theoretical solutioas: (a) a beam-column problem was 

used to check the geometric nonlinearity feature; (b) a short, thick 

column problem was used to check material nonlinearity; and (c) a simple 

soil problem was used to check soil nonlinearity. Finally, the results 

obtained from two experimentally field-loaded piles were compared with 

the numerical .results f 17om the model. 

After verification of the model, a 40 ft H pile (HP 10 x 42) in 

six typical Iowa soils was anlyzed by first applying a horizonta.1 dis.,. 

placement '11 (to simulate bridge motion) and no rotation at the top and 

th~n - applying a vertical load V incremently until failure occurred. 

"Based on the numerical results, the failure mechanisms were general­

ized to be of two types: (a) lateral type failure and (b) vertical 

ty-pe failure. It appears that most piles 'in Iowa soils (sand, soft 

clay -and stiff clay) failed when the applied vertical load reached the 

ultimate soil frictional resistance (vertical type failure). In very 
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stiff clays, however, the lateral type failure occurs before vertical 

type failure because the soil is sufficiently stiff to force a plastic 

hinge to form in the pile as the specified lateral displacement is 

applied. 

6.2. Conclusions 

From coonnents received from state highway departments on · integral 

abutment bridges, the writers infer that the benefits from using integral 

abutments are sufficient to justify the additional care in detailing to 

make them function properly. 

The results obtained from analyses of piles in different Iowa soils 

show that two types of failure mechanisms are poss.ible: (a) lateral 

type failure and (b) vertical type failure. For sand, soft clay and 

stiff. clay, vertical type failure usually occurs when the applied ver­

tical load exceeds the ultimate soil frictional resistance. For ·very 

stiff clays, lateral type failure occurs because of plastic hinge for­

mation in the pile. 

Preliminary results from this investigation showed that the vertical 

load-ca'rrying capacity of H piles is not significantly affected by lat· 

eral displacements of 2 inches in soft clay, stiff clay, loose sand, 

medium sand and dense sand. However, in very stiff clay (average blow 

count of 50 f~om standard penetration tests), it was found that the 

vertical load carrying capacity of the H pile is reduced by about 50 

percent for 2 inches of lateral displacement and by about 20 percent 

for lateral displacement of 1 inch. The average AASHTO (American 
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Association of State Highway and Transportation Officials) temperature 

change for Iowa is 40 °F for concrete bridges and 75 °F for steel 

bridges. If a lateral displacement of 1 inch was to be permitted, this 

would translate into allowable lengths of 700 feet for concrete bridges 

and 350 feet for steel bridges without expansion joints. 

On the basis of the preliminary results of this investigation, the 

265-feet length limitation in Iowa for integral abutment concrete bridges 

appears to be very conservative. The writers feel that further numerical 

studies and monitoring of piling stresses in integral abutment bridges 

should be performed before a reliable length limitation can be set. 

Since the upper layer soils in integral abutment bridges are frequently 

compacted, further investigation of the very stiff clay and soils with 

higher blow counts from standard penetration tests will be helpful in 

the effort to set reliable length limitations for concrete and steel 

integral abutment bridges. 

6.3. Recommendations for Further Study 

1. Only six typical Iowa soils have been brought into this investiga­

tion. More study sh.ould be done of other representative Iowa 

soils and layered soils with different combinations. 

2. The properties of Iowa soils . should be determined by standard 

laboratory tests to enable better represent4tion of soil c~aracter­

istics in the model so that piling stres.s·es and soil-pile interac­

tion could be predicted more accurately. 
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3 . The investigation should be expanded to include skewed bridges with 

integral abutments. 

4. An actual bridge should be instrumented and pile stresses monitored 

through several cycles of temperature change. (A model bridge or a 

portion of a bridge may also provide adequate data . ) Some research 

in this area has been performed in North and South Da~ota (see Sec­

tion 3.3}. 

5. · Complete documentation of the Yang S. computer program should be 

provided . This aspect will be covered in a supplemental report to 

be issued in August 1982. 
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9. APPENDICES 

9.1. Questionnaire for Bridges with Integral Abutments 
and Summary of Responses 

Part 1. Questionnaire 

Part 2. Responses to all questions except number 4 

Part 3. Responses to question 4 

Part 4. Additional comments made by some of the states 

Note : States not listed in Part 2 answered "no" to question 1 and, 

therefore, did not complete the remainder of the questionnaire . 
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Part 1 . Questionnaire for Bridges with Integral Abutments 

1. Do you use bridge designs with integral abutments and without expan-
sion devices, similar to the following sketch? yes __ no __ _ 
Primary (one) reason why, or why not:~-------~------­
If the answer is no, skip the remainder of the questionnaire and 
please return . 

't_ ABUTMENT 
BEARING 

PORTION OF BEAM 
ENCASED IN ABUTMENT 

BRIDGE 
BEAM 

2. With what type of br idges do you use integral abutments? 
steel prestressed concrete poured-in-place concrete _ _ 

3 . What are your maximum length limits (in feet)? 

o0 o0 
- 15° 15° - 30° 30°< skew 

steel 
prstressed concrete 
poured-in-place 

concrete 

4. What limits, if any, do you place on the p~les? (bearing vs. 
friction, soil type etc. ) 

s. 

steel pile 
timber pile 

concrete pile ~~----~--------------~---

What type of stru ctural assumption is made for the end of the 
girder? 
pinned (moment equal zero) 
fixed (rotation equal zero)~-~--

{
restrained by pile 

partially restra i ned -~--- restrained by soil on abut. __ _ 

other assumptions·----------- ------ --------
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6. What type of structural assumption is made for the top of the pile1 

pinned (moment equal zero) 
fixed (rotation equal zero) 
partially restrained 

other assumptions 

Is the joint detailed as a pin? 

{
restrained by girder 
restrained by soil on abut . 

7. What loads do you include when calculating pile stress? 

thermal 
shrinkage~­

temperature range 

soil pressure on abutment face 

8. How is bending accounted for in the pile? 

Neglect or assume bending stresses do not affect pile performance 
Assume location of pile inflection point and analyze pile as 

bending member 
Reduce bending by prebored hole 
Other 

9. What type of backfill material do you specify on the backside of the 
abutment? 

10. Does the approach pavement rest directly on the abutment? 

yes no 

11. Briefly evaluate the performance of integral abutment bridges in 
your state. (Compare to bridges with expansion -Oevices.) 

Construction 
relative cost more 
special problems 

Maintenance 
relative costs more 
special problems 

Please return to: Lowell Greimann 
420 Town Engineering 
Iowa State University 
Ames, Iowa 50011 

same less 

same less 



Part 2. Summary of responses to Questions 1, 2, 3, 5, 6, and 7. 

--

Steel Concrete Pres tressed 
Pile Loads 

Length Length Length Girder Pile 
End Top Soil 

State Reason Use <30;.,. >30>\- Use <30* >30* Use <30* >30* FixHy Fixity ·Thernial Shrinkage Pressure 

AL Cost y 300 --- y --- 115 y 416 104 Pin Pin y N y 

AZ Ma i nt y 253 N y 330 N y 404 N Pin Pin · y y y 
CA Cost y --- --- y 320 320 y 230 230 Pin R. Res N N N 
co Cost . y 200 --- y 400 --- · Y 400 --- ?in Pin N N y 
CT --- y 200 --- N --- --- N --- --- Pin Fix y N N 
GA El. Jt y 300 --- y 300 --- y 300 --- Pin --- N N N 
IA Cost N --- --- y 265 --- y 265 --- Pin Fix y N N 
ID Cost y 200 N y 400 N y 400 N Pin Pin N N N 
IN Cost N --- --- y --- 100 N --- --- --- --- N N N 
KS El. Jt y 300 300 y 350 350 y 300 300 Pin Pin y y N 
KY Cost N N N y 300 N y 300 N Fix Fix y N y 
MO -El. Jt y 400 --- y 400 400 y 500 500 Pin Pin N N N 
MT Cos t y 300 N y 100 N y 300 N Pin Pin N N y 
ND Maint y 350 --- y 350 --- y 450 --- Pin Fix N N N 
NE El. Jt y 300 --- N 300· --- y N --- ·Pin Pin y N N 
NM El. Jt y --- --- y --- --- y --- --- P. Res . P. Res . y y y 
NY Cost y 305 --- --- --- --- --- --- --- Pin --- y N N 
OH Cost y 300 300 y 300 300 y 300 300 Pin Pin N N N ...... 
OK --- y 200 N y 200 N y 200 N P. Res. P. Res. N N N ....., 

N 
OR El. J t y N N y 350 300 y 350 300 Pin Pin N N N 
SD Cost y 320 --- y 450 --- y 450 --- Pin Fix N N N 
TN El. Jt y 400 400 y 800 800 y 800 800 Pin Pin N N N 
UT El. Jt y 300 250 N --- --- y 300 250 Pin Pin N N N 
VA Simp . y 242 --- N --- --- y 454 --- Pin Pin N N y 
VT Cost y 150 100 N N N N N N P. Res. P. Res . y N N 
WA Cost N --- --- y 350 --- N --- --- Pin Pin N N N 
ws Cost y 200 200 y 300 N y 300 300 P. Res . Fix N N N 
WY Simp . y 300 300 y 500 500 y 500 500 Pin Pi n N N N 
Rl5 El. Jt N N N y 270 160 y 300· 240 P. Res . Pin N N N 

y Yes 
N No 

No Response 
J. Bridge skew in degress 



Part 2. Summary of responses to Questions 8, 9, 10 , and 11 . 

Pile 
Bending Approach Construction Cost Maintenance Cost 

Pavmt. on 
State Neglect In fl. Pt. Prebore Backfill Abutment More Same Less More Same Less 

AL y y N Gran. N N N y N N y 
AZ y N N Cohes. y N N y N N y 
CA y N N Perv. y N N y N N y 
co y N y Gran. y N N y N N y 
CT y N N Perv. y N N y N N y 
GA y N N Rd. Fill y N N y N N y 
IA N N y Gran. y N N y N N y 
ID y N N Rd. Fill y N N y N N y 
IN y t_l N Gran .. y N N y N N y 
KS y N N Rd. Fill y N N y N N y 
KY N y y Gran. N N N y N N y 
110 y N N Rd. Fill y N N y N N y 
MT y N N Gran. y N N y N N y 
ND y N N Gran. y N N y N N y 
NE y N N Rd. Fill y N y N N N y 
NM N y N Rd. Fill Y-N N N N N N N 
NY y N N Gran. y N N y N N y 
OH y N N Gran. y N N y N N y 
OK y N N --- y N N y N N y ~ 

OR y N N y 
...., 

N N Gran. y N N y '-"' 
SD N N y Gran. y N N y N N y 
TN y N N Gran. y N N y N N y 
UT y N N Gran. y N N y N N y 
VA y N N Gran. N N N N N N N 
VT y N N --- N N N y N N y 
WA N N N Gran. y N N y N N y 
ws y N N Gran. N ·N N y N N y 

WY y N N Gran. y N N y N N y 

~15 y N N Perv. y N N y N y N 

--

y Yes 
N No 

No Response 



Part 3. Summary of responses to Question 4. 

State 

AL 

AZ 

CA 

co 

CT 

GA 

IA 

ID 

IN 

KS 

KY 

MO 

MT 

ND 

NE 

NM 

NY 

OH 

OK 

OR 

SD 

TN 

UT 

VA 

VT 

WA 

ws 

WY 

Rl5 

Steel 

* 
9 ksi in Brg., <9 ksi in Frie. 

Assume 5 kips Lat. Resis ./pile 

Use in bearing 

Use in weak axis 

Use in weak axis, Frie. only 

* 
Use H-pile or shell 

Mostly used in bearing 

Use in Brg. or friction 

10' minimum length 

9 ksi in bearing 

* 
Used in weak axis 

Use steel only 

* 
Use in bearing 

* 
* 

* 
Use in single row 

Upper portion allowed to flex 

15' minimum length 

Use in bearing or friction 

Use in bearing or friction 

Use in bearing or friction 

Use in weak axis 

No limitations. 

-- -No response. 
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Timber 

Not used 

Same as steel 

Not used 

Not used 

Use of Br. Length < 150 ' 

Not used 

Mostly used in bearing 

Not used 

Used in friction 

Not used 

Not used 

Not used 

Not used 

Not used 

.c 

Not used 

Use in single row 

Not used 

Use in Brg. or Frie. 

Use in friction 

Not used 

Not used 

Concrete 

In friction only 

13 k . Lat. R. / pile 

Not used 

Not used 

Not used 

Not used 

Mostly used in Brg. 

Used in friction 

Used in friction 

Not used 

Not used 

... i: 

·,'( 

Not used 

..;_. 

* 
* 
Use in single row 

Not used 

Use in Brg. or Frie. 

Use in Brg. or Frie. 

Not used 

Not used 
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Part 4. Summary of Additional ·Comments Made by Some of the States 

Alaska 

No special construction or maintenance problems were noted. 

Arizona 

The additional lateral movement associated with this system, 

particularly with cast-in-place, post-tensioned concrete box girders, 

dictates longer wingwalls for backfill containment and the careful 

compaction of backfill material. Also, an adequate drainage system 

must be provided to prevent surf ace runoff from entering voids created 

at the ends of the wings and approach slabs; otherwise, progressive 

erosion of the approach embankment and under the approach slab occurs. 

California 

The abutment is not stable when standing alone during construction 

if the backwall height is too great. Wingwalls must be cast after 

stressing of cast-in-place prestress construction to avoid rotation and 

translation of walls. If soils don't yield, piling absorbs a large 

amount of prestressing force resulting in a large rotation at abutments 

and a large downward deflection in the span.. This has been a particular 

problem with simple span cast-in-place pre-stres·s construction . 

Colo·rado 

We do have some problems with settlement of backfill behind the 

abutment and cracks in the asphalt pavement, but the problems are much 

less than the problems associated with snowplows and bridge expansion 

devices and bearing devices. 
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Connecticut 

We have constructed one bridge to .date and are very satisfied with 

it. 

Georgia 

Have had a problem with cracks in the wingwalls. 

Idaho 

Some problems have resulted from failing to provide adequate ex-

· pansion joints in concrete approach pavements, but such problems are not 

peculiar to design concept under consideration. Problems are to be ex­

pected if the bridge is long, has no expansion joints anywhere, is a 

steel bridge, is on a substantial s~ew, or a combination of the foregoing. 

If used with discretion, the d.esign concept is good in that it saves 

initial and maintenance costs of expansion joints. 

Kentucky 

No special construction or maintenance prob_lems have been reported . 

Missouri 

We limit integral abutment bridges to a 40 degree skew . 

Montana 

No ~pecial construction problems noted. Integral abutment bridges 

probably require a little more maintenance due to embankment settlement . 

Nebraska 

Maintenance can be a problem if no concrete approach slab is pro­

vided . 

New York 

We assume that construction costs are lower because of simpler abut­

ment-forming details and fewer piles. Setting the girders directly on 
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the piles created some alignment difficulty for the contractor. In the 

future we plan to use a detail similar to the detail shown in No. 1 

of your questionnaire. 

The continuous ·approach slab on a 125 foot single-span steel bridge 

built in 1980 has cracked at the rear face of the backwall. It is a 

tight crack that runs the full width of the slab but does not appear to 

be detrimental. To date, no detectable cracking has occurred in the 

backwalls and the abutments seem to be functioning as designed. 

Ohio 

As yet, no significant construction or maintenance problems have 

been noted. 

Oklahoma 

Integral abutments are used only on bridges with zero skew. 

South Dakota 

With steel bridges and longer concrete, we still utiliz.e an expan­

sion device in the approach slab system. Savings is in bearings and 

piling. Sill or abutment does not have to be designed for ove.rturning 

loads. 

For most steel bridges and longer concr.ete, we feel it is n~cessaey 

to attach the approach slab with integral curb and gutter to the .bridge. 

Without this provisio~, · severe erosion around the wings can result and 

problems with approach fill settlement are increased. 

Utah 

· No special construction or maintenance problems have been noted. 

Vermont 

Some minor approach settlement is anticipated. 
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Washington 

Sometimes the piles may not end up in a straight line and at the 

right location. Some maintenance problems with downdrag and settlement 

have been noted. 

Wisconsin 

Cracking of diaphragms has been noted on bridges with large skews 

(greater than 20. degrees) and/or with long abutments. We limit integral 

abutment bridges to 40 degree skews . 

Wyoming 

No special construction or maintenance problems have been noted. 

FHWA Region 15 

We noted a problem with pavement cracking at bridge ends. This has 

since been eliminated with the use of approach slabs . 
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9.2. Memorandum to Designers, Office of Structures Design, 
California Department of Transportation 

This memorandum was attached to California's response to the integral 

abutment questionnaire. It describes California's criteria for the use 

of end diaphragm abutments, which includes both integral and semi-integral 

types. 



Memo to Designers 

The end diaphragm is an integral part of the bridge superstruc­

ture. Frequently this diaphragm is extended below the soffit of the 

superstructure to rest directly on piles or on a footing . This type of 

support is an "End Diaphragm Abutment . " The discussion here will be 

limited to those situations where the diaphragm is fixed at the soffit 

and in effect is a cantilever beam between the soffit and the base which 

rests on piles or a fo9ting . 

Structure Movement : 

Thermal movements are easily absorbed by this abutment. Concrete 

bridges of 400 feet between abutments, when conventionally reinforced, 

have shown no evidence of distress even though the end diaphragms rested 

directly on piles. 

Elastic shortening due to post tensioning, however, is rapid and 

must be provided . for in the abutment design when the initial shortening 

due to stressing exceeds 3/8" . When the span adjacent to the abutment 

exceeds about 160 feet, there could be an additional problem of rotation. 

To minimize the damage to the abutments of single span post tensioned 

structures due to earthquake, both abutments should be on sliding sup­

ports when that is the reconunended treatment (see table below) . 

Below are listed some guidelines for use in providing for abutment 

movement . The limits shown are by no means absolute, but illustrate a 

conservative approach ·to the problem. Seat-type abutments are advisable 

where movement ratings are equal to or greater than 1-1/2 inches. 
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Restraining Forces: 

Listed be-low are assigned values for resistance offered by various 

end _conditions. This force is applied at the base of the end diaphragm 

to determine the proper reinforcement. The values shown do not take 

into account the .special situations where very long piles or small lim-

ber piles offer little resistance to longitudinal movement. Note that 

earthquake longitudinal force may govern over those shown below. See 

Section 2-25 Bridge Planning & Design Manual, Volume I. 

Abutment Type Design Logit. Force 

* End Diaphragm on CIDH piles 25 kips per pile 

End Diaphragm on Concrete Driven Piles * 20 kips per pile 

End Diaphragm on 45T Steel Piles * 15 kips per pile 

End Diaphragm on Neoprene 'Strip or Pads 15% of dead load 

End Diaphragm on Rollers 5% of dead load 

* . These values are intended for use in the design of end diaphragm only. 
For determining the number of piles required for longitudinal force, 
see Section 4-15.8(3) of Bridge Planning & Design Manual, Vol. I. 

Earthquake Forces: 

Shear keys must be added to provide resistance to transverse and 

longitudinal earthquake f~rces acting on the structure. These normally 

will be placed behind and at the ends of the abutment wall on narrow 

structures. On wide structures, additional keys may be located in the 
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interior . One half inch expansion joint filler should be specified at 

the sides of all keys to minimize the danger of binding. For earthqu~ke 

design 'forces, see Secti~n 2-25.2, Bridge Planning & Design Manual, 

Vol. I. For key sizes and key reinforcement, see Section 1, Bridge 

Planning &.Design Manual, Volume III. 

Drainage 

1. No pervious material collector or weep holes required for flat 

slab bridges. 

2. Continuous pervious backfill material collector and weep holes 

may be used for abutments in fills or well drained cuts in 

desert locations and at sites where a 5-ft level berm is spe­

cified. 

End Slope Treatment 

Unprotected berm 

Bib slope paving 

Full slope paving 

Weep Hole Discharge 

Directly on unprotected berm 

On spacer or groove· in paved surface 

On spacer on groove i n paved surface 

3. Continuous permeable material and Perforated Steel Pipe col­

lector discharging ·into Corrugated Steel Pipe overside drains 

should be used for all other abutments. 

4. Corrugated Steel Pipe overside drains must be coordinated with 

road plans. If there is no discharge system and no collector 
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ditch, the outfall must be located away from the toe of slope 

to prevent erosion of the end slope. 

5. Abutment drainage systems should be coordinated with. the 

slope paving . See Memo to Designers 5-10. 

Backfill Placement: 

Unless there are ·special soil conditions or unusual structure geo­

metrics, the designer need not specify the method or timing of backfill 

placemen~. Passive resistance of soil in front of the end diaphragm 

offers little restriction to structure movement due to stressing. · Nor 

will the active pressure of backfill behind the end diaphragm materially 

alter the stress pattern even if the fill is completed at one abutment 

before being started at the other. 

Suggested Details : 

Sketches showing suggested abutment details are located in Bridge 

Planning and Design Manual, Volume IV, Detailer's Guide. 
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9.3. Iowa Department of Transportation 
Foundation Soils Information Chart 

A majority of ·the bridge foundations designed by the Highway Divi-

sion, Iowa Department of Transportation rest upon pilings which derive 

their support primarily from the shear strength of the surrounding. soil 

rather than from end bearings. Economical and safe design C?f such foun-

dations requires a knowledge of the bearing capacity of the ·foundation 

soils. A chart for pile length determination based upon the available 

information and experience was first introduced in 1958. This chart 

provided a feasible method of selecting pile lengths which effectively 

reduced pile cut-off. As more information becomes available, it is 

necessary that the "Foundation Soils Information Chart," used .for es ti-

mating pile lengths, be periodically updated. 

A total of 234 pile load tests have been perfo_rmed since 1950. To 

evaluate the information properly, the tests were categorized as (a) pile 

tested to yield, and (b) pile tested to bearing . Of the total, 117 pile 

load tests were grouped into the "pile tested to yield" c~tegory. To 

evaluate the bearing capacity of foundation soils the piles tested to 

yield were reviewed, excluding the inconclusive tes~s . Sufficient num-

bers of conclusive tests are available for review. 

The pile load tests performed on piles founded in only one founda-

tion soil have enabled establishing a definite bearing value for that 

soil. Pile tests on certain soils have indicated a need for change in 

the bearing values given in the previous charts. 

All available foundation soil information has been evaluated and 

* incorporated in the revised design chart. Blow count values (N-Values ) 



185 

obtained from standard penetration tests performed on foundation soils 

and bedrocks have been included in the chart and in the additional 

recommendations . . Statistical analysis was used to determine the mean 

value and standard deviation for blow counts on all soils. 

Evaluation of pile load tests performed upon tapered steel shell 

piles on the I-129 project at the Missouri River crossing south of 

Sioux City indicate that the bearing value of the tapered pile in 

cohesionless foundation soils is greater than the bearing for parallel 

sided pile. However, the bearing value for tapered piling is not as 

high as originally indicated by the test loads made at the Council 

Bluffs viaduct. The additional column for steel shell piles has been 

left in the revised chart but the values have been reduced. According 

to Peckt the effect of taper pile in unconsolidated cohesive soils 

does not increase the bearing capacity of the pile. 

The attached "FoUI1dation Soils Information Chart" gives the allow-

able friction bearing per foot length of pile for different types of 

piles in different foundation soils . The chart and the methods of pile 

length determination described on subsequent pages will allow the de-

signer to effectively select adequate pile lengths. To make effective 

use of the chart, the sounding nomenclature should compare with the chart 

nomenclature. The revised chart and the information contained herein 

will be subject to change as additional information becomes available. 

* N-Value : The number of blows required by a 140-lb hammer with a free 
fall of 30 in. to drive a 2-in. O. D. by 1-3/8 in. I.D. split tube 
sampler 1.0 

tPeck, Ralph 
·washington, 

ft into the soil. 

B. ~ A Study of the Comparative Behavior of Friction Piles: 
D.C.: Highway Research Board: Special Report #36: 1958. 
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The haouner formulas used for pile driving during construction shall 

conform to the Standard Specifications and current Supplemental Specifi­

cations unless otherwise specified . The present hammer formulas are used 

as .a check .for pile bearing during construction. When the formula bear­

ing for a pile is less than the design bearing, a piie load test should 

be secured. 

The "Foundation Soils Information Chart" is intended to be an 

effective aid in selecting proper pile lengths. At stream crossings 

where scour may be a problem, tip penetration should be specified. 

Preliminary Bridge Design will determine the approximate scour depth. 

Where compressible (unconsolidated) soils are under a fill ; the 

fill should be predrilled, and drag forces calculated in accordance 

with the method described elsewhere. 

A steel test pile in Johnson County was tested by pulling. The 

resultant allowable bearing value for very .firm glacial clay fill was 

0.3 tons per foot in uplift. 

Additional Recommendations 

1. Do not end a pile in a foundation material for which N-Value is 

4 or less. 

2. For wood friction piles, calculate the pile length from the total 

estimated safe bearing based on the design load and select the 

nearest pile length in multiples of 5 feet. 
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3. For a steel pile, the allowable load over the cross sectional area 

of the tip of the pile shall not exceed the following: 

6,000 psi in bedrock for which N = 20 - 200 

9,000 psi in bedrock for which N = 200 or more 

4. When driving steel pile into bedrock, the following penetration 

is recommended : 

8 ft to 12 ft in broken limestone, where practicable . 

8 ft to 12 ft in shale or firm shale (N = 20 to 50). 

4 ft to 10 ft in medium hard shale, hard shale or silt' stone 
(N = 50 to 200) . 

3 ft to 6 ft in sandstone, siltstone, or hard shale (N = 200 
or more). 

1 ft to 3 ft i n solid limestone . 

S. If spread footing foundations are considered for a· structure, addi-

tional core borings should be obtained to determine the allowable 

bearing value of the foundation material. In the absence of any 

other data, the allowable bearing value may be adopted from the 

following table: 

Average Allowable Bearing 
Bedrock N-Value Value, tons/sq ft 

Shale 16 2 
Firm Shale 25 3 
Med. Hard Shale 50+ .5 
Hard Shale 50+ 5 
Siltstone so+ 5 
Sandstone so+ 5 
Limestone 100+ 10 



Foundation Soils Information Chart 

Soil Description 

Alluvium or Loess 

Very soft silty clay 
Soft silty clay 
Stiff silty clay 
Stiff silt 
Stiff sandy silt 
Stiff sandy clay 
Silty sand 
Clayey sand 
Fine sand 
Coarse sand 
Gravelly sand 

Glacial Clays 

Firm silty clay 
Firm silty gl. c l ay 
Firm clay (Gumbotil) 
Fi rm glacial c l ay 
Firm sandy gl . clay 
Fi rm-very firm gl. cl ay 
Very firm gl . clay 
Ve ry firm sandy gl. cl ay 

Mean 
N-Value 

1 
3 
6 
5 
5 
6 
8 

13 
15 
20 
21 

11 
11 
12 
11 
13 
14 
24 
25 

Range* 
o,f 

N-Value 

0- 1 
2- 4 
4-8 
3-7 
4-8 
4-8 
3-13 
6-20 
8-22 

12-28 
11-31 

7-15 
7-15 
9-15 
7-15 
9- 17 

11-17 
17- 31 
15-35 

Wood 
Pile 

0.3 
0 .3 
0 . 5*".\-
o.s 
0.5 
0.7 
0.8 
0 . 7 
1. 0 
1:2 
1.6 

1. 0 
Li 
Li 
T:4 
1. 4 
T:4 
1.6 
1.6 

*Range = mean ± 1 std. deviation . 
;':* 

Underlined values determined from pile load tests to yieid . 

Estimated Allowable Bearing Value for Friction Piles in Tons per Foot 
(Factor of Safety = 2.0) 

Steel Shell Pile 

St eel Concrete Pile Parallel Sided 
"H" 

Pile 16" 14" 18" 14" 12" 10" 

0.2 0.5 0.4 0.3 0.3 0 . 3 0.2 
0.2 0.5 0.4 0.3 0.3 0.3 0.2 
0.4 0 . 8 0.7 0.5 0.5 0.4 0 . 4 
0.4 0.8 0.7 o.s o.s 0 .4 0.4 
0 . 4 0.9 0.8 0.5 0.5 0.4 0.4 
0 . 6 0.9 0.8 0.6 0.6 0.5 0 . 4 
Q.7 1.0 0.9 0.6 o.6 0.5 0 .4 
0.6 1.0 0.9 0.6 0.6 0.5 0 . 4 
o.6 1. 1 1..0 0.7 Q.7 0.6 0 .5 
D.9 1. 2 l. I D.9 D.9 0.8 0.6 
D.9 1.6 1. 6 l. 3 l. 2 1.0 0.9 

0.7 0.9 0.8 0.7 0 .6 
0.8 1. 0 0.9 0 . 7 0.6 
1. 0 1. 0 0.9 0.7 0.6 
0.9 1.1 1.0 0.9 0.8 
0. 9 1.1 1. 1 0 . 9 0 .8 
1:2 1. 2 1.1 0.9 0.8 
T:4 1. 6 ]. 7 1. 4 1. 3 
T:4 1.6 1. 6 Ll l.3 

Note: Gl acial soils with N-values greater than 35 and granular soi l s wi th N-values greater t han 50 MUST be given special considera t ion . 

Date : January, 1967 
Revised: June, 1976 

Tapered 

12" (Av.) 

0.9 
1:2 
1.6 

,.... 
CX> 
CX> 




