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CHAPTER 1. INTRODUCTION 

The construction of the Saylorville Dam and Reservoir on the 

Des Moines River created an ideal opportunity to study bridge behavior. 

Due to the dam and reservoir construction·, six highway bridges 

crossing the river were scheduled for removal. Five of these are old 

pin-connected, high-truss, single-lane bridges and are typical of 

many built around the turn of the century throughout Iowa and the country. 

Only limited information on their design and construction is available 

because these bridges were built circa 1900. Because there is an 

increasing need to determine the strength and behavior characteristics 

of all bridges, the removal of these five was invaluable by allowing 

the study of bridge behavior through testing actual prototype bridges 

rather than physical or mathematical models. The purpose of this 

testing program was to relate design and rating procedures presently 

used in bridge design to the observed field behavior of this type of 

truss bridge. 

A study to determine the feasibility of performing these load tests 

1 was conducted several years ago by Iowa State University Included in 

the study findings was a recommendation that a broad range of programs 

be conducted on several of the truss bridges involved in the removal 

program. The first truss bridge to be replaced, the Hubby Bridge, was 

available for testing in June 1974. A research program was developed 

and undertaken by Iowa State University to conduct a number of the 

recommended tests. 2 3 Previous reports ' detailed the research and 

findings of the first phase of the program which covered the ultimate 

load behavior of the high truss bridge and the second phase of the 

program which covered the service load testing of the Hubby Bridge 
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and the Chestnut Ford Bridge. The tests on the Chestnut Ford Bridge 

were performed while the bridge was still open to traffic. Also 

included in the study were several supplemental programs, including 

the fatigue and static testing of bars obtained from both of the 

above mentioned bridges. This report is a summary report on the 

entire project and includes an outline of the results of the program 

and recommendations for implementation of the findings. 

Ob"jectives 

Specifications and manuals adopted by the American Association of 

State Highway and Transportation Officials (AASHT0) 4 •5 contain criteria 

used in the design and rating of highway bridges in the United States. 

These criteria are based on rational structural analysis, actual 

experimental investigations, and engineering judgment. These criteria 

also attempt to take into account actual bridge behavior to assure 

safe and serviceable structures. However, as a result of the 

catastrophic collapse of several old bridges in the last 10 years, 

considerable interest has been generated in determining the actual 

load-carrying capacity of bridges. The lo"ad capacity of newer 

bridges can generally be obtained from existing plans and specifications 

that can be supplemented by field examinations and, if necessary, 

actual field tests. However, for the old pin-connected, high-truss 

bridges, there are generally no technical data available. There 

is also a complete lack of field load test data at service load 

levels or at ultimate load capacity. The general objective of the 

program was to provide data on the behavior of this bridge type in 
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the service load range and up to ultimate capacity, as well as data 

on the .remaining fatigue life of the tension members in the truss. 

As engineers undertake the analysis and rating of these bridges, 

many questions arise. These include the condition of the joints, 

the strength of the eyes (including forgings) in the tension bars, and 

the behavior of the floorbeams and deck. The results reported here 

are limited to the two bridges tested, but the results should nevertheless 

provide an indication of possible answers to the questions posed above. 

The specific objectives of this load test program were: 

1. Relate appropriate AASHTO criteria to the actual bridge 

behavior as determined from tests on the available truss 

bridges. 

2. Determine an estimate of the remaining fatigue life of the 

bridge components. 

3. Determine the effect of repairs on the remaining fatigue 

life of the bridge components. 

The results of the research will provide a better understanding of 

the actual strength of the hundreds of old high-truss bridges existing 

throughout Iowa as well as the country as a whole. 

General Test Program 

The first phase of the test program consisted of ultimate load 

testing of one span of the Hubby Bridge in Boone County, ultimate load 

testing of two I-shaped floorbeams of the bridge, and ultimate load 

testing of two panels of its timber deck. The truss span was tested in 

an "as is" condition with loads simulating actual truck loading. After 

initial failure the truss was damaged and retested in this condition. 
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The floorbeams were tested with loads to simulate an axle loading. One 

of the floorbeams had some initial crookedness, while the other was 

essentially straight. The loads were applied using hydraulic jacks 

and dead weights in both the truss test and the floorbeam tests. One 

of the timber deck tests was performed with loads simulating a truck 

centered on the deck panel and the other with loads placed three ft. 

off center to simulate a truck on the edge of the deck panel. 

The second phase of the test program consisted of field service 

load testing of the west two spans of the Hubby Bridge and of the 

west span of the Chestnut Ford Bridge in Dallas County. The tests 

were conducted using loaded county gravel trucks to simulate a 

standard H truck loading. The trucks were driven along the center

line and along the edges of the roadway of each bridge. 

In addition, during the removal of the two bridges, a number of 

tension eyebars were salvaged for use in a supplementary fatigue 

testing program. The laboratory tests that were conducted consisted 

of fatigue testing 23 eyebars in their original condition and 9 

eyebars after they had been damaged and then subsequently repaired. 

Static tests were conducted on 19 eyebars in their original condition 

and on three eyebars that had been purposefully damaged in the 

laboratory and then subsequently repaired. Three different types of 

damage and repair were used which simulated the possible types of 

damage in the forgings and in the eyes of the bars. 



5 

CHAPTER 2. THE TEST BRIDGES 

The highway bridges selected for testing were located on the 

Des Moines River northwest of Des Moines, Iowa, in an area which will 

be included in the Saylorville Reservoir. One of the high truss 

bridges selected was the Hubby Bridge built in 1909 (Figs. 1 and 2), 

located in southern Boone County about 25 miles northwest of Des Moines. 

It was composed of four modified Parker type high-truss simple-spans, 

each 165 ft. long. 

The other bridge selected was the Chestnut Ford Bridge (Figs. 1 

and 2), located in northern Dallas County about 20 miles northwest of 

Des Moines and five miles south of the Hubby Bridge. This bridge was 

built circa 1900 and was composed of four high-truss simple-spans. 

The first, third and fourth spans, from east to west, were modified 

Pratt-type trusses each 150 ft. long, and the second span was a Pratt 

truss 180 ft. long. Testing was conducted in the fourth, or west, span. 

Truss Descriptions 

A. Hubby Bridge 

The trusses consisted of tension eyebars of both square and rec

tangular cross sections, built-up laced channels for the end posts and 

upper chord compression members, and laced channels for the other 

compression members. The square tension eyebars were used for truss 

hangers and diagonals and the rectangular tension eyebars were used 

for the truss lower chords and diagonals. The eyes for these two types 

of eyebars were formed by bending a bar around to form a tear-drop 
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shaped eye. This tear-shaped eye :was then forged to a bar to form 

one end of the eyebar. 

The deck :was built of timber stringers, timber crossbeams, and 

timber floor planks. The stringers stood on edge and were supported 

by rolled I-shaped floorbeams. A typical deck panel consisted of 

15 stringers,8 crossbeams, and 16 floor planks as shown in Fig. 3; 

The floorbeams were standard I-sections 12 in. deep and :were 

connected to the truss with clip angles. 

B. Chestnut Ford Bridge 

The test truss consisted of tension eyebars of circular, square, 

or rectangular cross section for tension members, of built-up laced 

channels for end posts and upper chord compression members and of 

laced channels for the remaining compression members. One inch square 

tension eyebars were used for the truss hangers. Rectangular tension 

eyebars :were used for the truss lo:wer chords and for some of the 

diagonals with round bars being used for the other truss diagonals. 

The eyes for the square, round and the smaller rectangular eyebars 

were formed by bending the end of the bar around to form a tear-shaped 

eye and then forging it to the continuing bar. The eyes for the larger 

tension eyebars were machined from a plate to form a round-shaped 

eye and then forged to the bar. 

The deck :was built of timber stringers and timber floor planks. 

The stringers stood on edge :with their longest dimension parallel 

to the length of the bridge and were supported by rolled I-shaped 

floorbeams. The cross floor planks :were laminated together with 

bolts and :were spiked to the stringers every two ft. A typical 
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panel consisted of 13 stringers with the continuous floor planking 

as shown in Fig. 4. 

Physical Properties 

Chemical analysis and physical property tests were made of several 

sections from each of the bridges. The results of the analyses and 

tests are shown in Table 1. The tension eye-bars were determined 

to be made of wrought iron and the other members of steel. The timber 

members in the Hubby Bridge were made from Douglas Fir and pressure-

treated in accordance with Iowa State Highway Commission Standards. 

Typical stress-strain curves for the wrought iron and steel and the 

load deflection curve for the timber beams can be found in the interim 

2 3 
reports ' 

Table 1. Physical properties. 

a. Chemical Properties 

Element 

Carbon 
Manganese 
Phosphorus 
Sulfur 

Nickel 
Chromium 
Molybdenum 
Copper 

Aluminum 
Vanadium 
Silicon 
Cobalt 

Hubby Bridge 

Percentage in 
Wrought Iron 

<0.03 
<0.05 

0.29 
0.042 

<0.05 
<0.05 
<0.03 
<0.03 

0.03 
<0.01 

0.22 
0.02 

Percentage 
in Steel 

0.19 
0.40 
0.012 
0.029 

<0.05 
<0.05 
<0.03 
0.03 

<0.05 

Chestnut Ford Bridge 

Percentage in 
Wrought Iron 

<0.3 
0.25 
0.130 
0.036 

<0.05 
<0.05 
<0.03 
0.08 

0.12 
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Table 1 continued. 

b. Material Properties 

Bridge Material cr (ksi) cr 
1 

(ksi) E(ksi) y u t 

Wrought Iron 35.5 49.l 28,000 

Hubby Steel 42.0 58.7 30,900 

Timber 4.02 1,150 

Chestnut Wrought Iron 34.9 48.6 25,300 

Ford Steel 
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CHAPTER 3. FIELD TESTS AND TEST PROCEDURE 

This section sunnnarizes the specific tests and events which 

occurred during the conduct of the field tests. Each testing program 

(i.e., timber deck test, truss test, floorbeam test, and service 

load tests) will be discussed separately. In this section, only the 

occurrences will be discussed, and the analysis of the behavior will 

be presented in Chapter 5. 

Field Tests - Ultimate 

The test procedure for each test was to 

1. Apply the first load increment, 

2. Hold the load until the appropriate instrumentation 

readings could be taken, 

3. Record any behavioral indications, 

4. Increase the load by the pre-established increment, and 

5. Repeat steps 2-4 until failure occurs. 

Timber Deck Test 

The timber deck in two different panels on span 2 was the first 

part of the Hubby Bridge to be tested. Each of the panels was 

tested to failure using a simulated axle load applied by hydraulic 

jacks. 

The first test was conducted on the panel between L8 and L9 

with the loads centered on the panel as shown in Figs. 5 and 6. 

The second test was conducted on the panel between L2 and L3 with 

the loads eccentrically placed so that the center of the axle was 
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three ft. from the center of the panel (edge wheel two ft. from edge 

of the roadway) as shown in Figs. 7 and 8. The tests were conducted 

using a self-contained system with the floorbeams acting as reactions. 

Instrumentation on the timber deck tests was limited to deflection 

dials placed across the panel mid-span between panel points. Six 

deflection dials were used in the first deck test, while seven were 

used in the second test. 

The load histories of each of the two tests are given in Figs. 9 

and'lO. They show dramatically the effect of stringer failure as 

the load increased. The maximum load was 101.S kips for the centered 

loading pattern and 77.4 kips for the edge loading pattern. 

Truss Test 

The second part of t:he Hubby Bridge to be tested was the trusses 

of span 2. The test was performed using simulated axle load applied 

at joints L4 and LS in the ratio of 1 to 4, with the greater load 

being applied at Ls· This ratio was used because it represented the 

relat:ionship between the axles on an AASHTO H truck. 

The loads were applied using hydraulic jacks connected to large 

concrete mats acting as dead weights. The weights of these mats 

ranged from 34 kips to 112 kips. Soil was piled on top of the mats 

to increase their weight. Two of these mats, cast under span 2, were 

used for the truss test. The other two, under span 1, were used for 

the subsequent floorbeam tests. One inch diameter rods were attached 

to the mats using concrete inserts and a system of structural tubes. 

The hydraulic jacks were connected to the rods through a similar system 

of structural tubes so the loads could be applied to the truss. 
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Sketches of the loading system are shown in Figs. 11 and 12. The 

instrumentation on the truss tests consisted mainly of strain gages 

on the truss members. 

The truss tests proceeded as planned up to a total load of 80 kips. 

While proceeding to a load of 90 kips the observation was made that 

yielding was taking place in one of the hangers at L5 on the downstream 

side. The yielding made it extremely difficult to hold and increase 

loads. During the load increment to 110 kips, there was considerable 

yielding at L5• At a total load of 110 kips, a snapping sound was 

heard, and the load dropped several kips; however, no visible sign 

of failure was evident. Loading proceeded with the same difficulty 

to a load of 130 kips. At this load the flaking of the rust on the 

hangers at 15 (upstream side) was very noticeable. 

At a total load of 133 kips (106.4 kips at L5 and 26.6 kips at 

L
4
), one of the hangers at L5 (upstream side) failed. The location of 

the failure and a close-up of the fracture are shown in Figs. 13 and 

14. Subsequent reloading to 140 kips resulted in only increased 

truss distortion. 

It was decided that further testing of the trusses would not 

provide additional meaningful information. The decision was then 

made to pursue the objectives of the second truss test by "damaging" 

one of the key members and reloading. To simulate the damage, member 

L2u
2 

was cut with an acetylene torch. This member was damaged because 

it is representative of laced channel compression members. 

Initial instrumentation readings were taken and reloading at only 

L4 began. The load was increased to 70 kips with sets of instrumentation 

readings taken at periodic intervals. After a load of 70 kips was 

reached without any signs of additional distress, the decision was 
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made to cut the other channel comprising membe~ L2U? to obtain a failure 

of the truss. The load was again applied at L4 with the load reaching 

39 kips before the member collapsed upon itself (forming a complete 

but shorter member) at the cut location (Fig. 15). This resulted in 

a slight drop in load. The load was then increased to 72 kips with 

no further distress of the truss. The load was removed and all 

testing terminated because of potential danger of collapse during 

any additional member damage. 

Floorbeam Test 

The final portion of the ultimate test program was the testing 

of two floorbeams in span 1. They were both tested to failure using 

a load applied by hydraulic jacks and simulating a truck axle. The 

first test was conducted on the floorbeam at L5 . The compression 

flange of this floorbeam was approximately 13/16in. out of line 

horizontally at mid-span. The second test was conducted on the 

floorbeam at L4 . The compression flange of this beam was initially 

straight (within allowable tolerance.s). The test setup and load 

placement on the floorbeam are shown in Figs. 16 and 17. As can be 

seen from these two figures, each floorbeam was loaded using a system 

similar to that employed for the truss test. 

Instrumentation consisted of strain gages on the two floorbeams 

tested, as well as on the adjacent floorbeams. Strain gages were 

also placed on selected truss members. Deflection dials were used 

to measure the displacement of the test beams at the centerline and 

quarter points. 
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The first test wns conducted on floorbeam 5. The load was first 

applied in increments of 10 kips, but as the loading progrE>ssed to 

higher levels the load increment was reduced to 5 kips until failure 

was reached. The test on floorbeam 5 proceeded as planned up to a 

load of 40 kips. At this load the floorbeam had started to buckle 

laterally between load points as well as to pull away from the timber 

stringers. As the load reached 45 kips the floorbeam continued to 

buckle laterally and pull away from the stringers. The load was then 

increased to 50 kips, at which point the lateral deflection due to 

buckling was approximately one inch beyond the initial crookedness 

of the floorbeam at its centerline as shown in Fig. 18. Termination 

of the test occurred at this point because the floorbeam was unable 

to sustain any further increase in load. 

The test of floorbeam 4 (initially straight) proceeded without 

any lateral distortion or excessive end distress up to a load to 

50 kips. At this load, the observation was made that the plate 

connecting the floorbeam to the truss was bent considerably. Loading 

continued up to 65 kips. After reaching this load, three bolts broke 

on the upstream end connection of the floorbeam to the truss. The 

load then dropped to 61 kips. At this time the floorbeam was approximately 

3/8 in. out of line at its centerline. The floorbeam had buckled 

laterally only between the load points, indicating that the load 

points provided adequate lateral bracing. The floorbeam was then 

reloaded to 66 kips, when four bolts broke on the upstream connection 

of the floorbem to the truss, causing the load to drop to 54 kips. 

Further attempts to increase the load above 55 kips failed and the test 

was terminated due to extensive lateral buckling of the beam. 
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Service Load Tests 

Service load tests were performed on the two west spans of the 

Hubby Bridge in Boone County and on the west span of the Chestnut 

Ford Bridge in Dallas County. The tests were accomplished using 

loaded gravel trucks supplied by Boone County and Dallas County. The 

trucks were weighed using portable scales before each test by a State 

Weight Officer. The weights of the trucks for each test are given 

in Table 2. 

Table 2. Wheel loadings of trucks. 

Front (lbs) Rear (lbs) 
Test Left Right Left Right Total (lbs) 

Hubby Bridge - Span 1 3790 3780 10290 11010 28870 

Hubby Bridge - Span 2 4120 3820 12500 11250 31690 

Chestnut Ford 3850 3690 10260 11520 29320 

The procedures used for each of the tests were the same, but the 

instrumentation varied. The testing procedure for each test was: 

1. Take an initial reading on all instrumentation with the 

truck completely off the bridge, 

2. Move the truck to the first desired position on the bridge, 

3. Stop the truck there while readings are taken on the 

instrumentation, 

4. Move the truck to the next desired position, 

5. Repeat steps 3-4 until all desired readings have been taken, 

and then 

6. Move the truck completely off the bridge and take a final 

reading of the instrumentation. 
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The instrumentation for Hubby Bridge span 1 consisted of 108 

strain gages and five deflection dials. The deflection dials were 

located at the centerline, quarter points, and near the ends of the 

floorbeams at L5. Of the 108 strain gages, 76 were mounted on selected 

truss members and 32 were mounted on floorbeams 3, 4, 5, and 6. 

The strain gages on the floorbeams were mounted on the compression 

and tension flanges of the floorbeams. They were located at the 

centerline, third points, and also near the ends of the floorbeams 

4 and 5 and at the centerline and near the ends of floorbeams 3 and 

6. The truck was driven down the centerline of the bridge first, 

stopping with its rear wheels in line with the panel points. The 

truck was then driven down each side, with the center of the wheels 

approximately two ft. from the edge of the roadway, stopping only 

at L3, L4 , L5 , and L6• 

The instrumentation for the Hubby Bridge span 2 test consisted 

of 116 strain gages and 6 deflection dials. Eight gages were mounted 

on the compression and tension flanges at the centerline of the floor

beams at L2, L3' L
8

, and L9 and the remaining 108 were mounted 

on the truss members. 

The truck was driven down the centerline of the bridge first, 

stopping with its rear wheels in line with the panel points. The 

truck was then driven down each side stopping only at L5 and halfway 

between L2 and L
3

• 

The instrumentation for the Chestnut Ford Bridge consisted of 15 

strain gages mounted on the north truss of the west span. The strain 

gages were mounted on tension members only. The truck was driven 

down the centerline of the bridge and then down one side of the bridge 

stopping at each panel point. 
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After this part of the test was completed the truck was located on 

the bridge with its rear wheels halfway between panel points. Deflection 

measurements of the deck were taken while the truck was at the center of 

the bridge roadway and at eccentric positions on the left and right sides 

of the bridge roadway. 
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CHAPTER 4. LABORATORY TESTS AND TEST PROCEDURE 

The service load field tests were completed in September 1974 

and the bridges were removed in January 1975. The contract for the 

salvage of the bridges stated that the east span of the Hubby Bridge 

and the west span of the Chestnut Ford Bridge were to be removed as 

if they were to be reconstructed. Over 100 eyebars from these spans 

were shipped to the laboratory. 

This section outlines tests that were performed in the 

laboratory. 

Fatigue Tests 

The main thrust of the laboratory testing program was the fatigue 

testing of 30 eyebars. The fatigue tests were accomplished using a 

special apparatus design so that loads could be applied to the 

eyebars through pins placed in the eyes (Fig. 21). The pins 

used were actual pins taken from the test bridges. The pin used in 

the eye of an eyebar was not necessarily the one that was originally 

iu that particular eye, but it was nevertheless a pin of the same 

size. The eyebars were inspected for dimensions, flaws, and peculiarities 

before they were tested. 

The cyclic loads that were imposed on the eyebars varied from 

a minimum of two ksi to a maximum of 16-22 ksi. All of the fatigue 

tests were run with a cyclic frequency of three to four hertz. 

Some of the tests were performed on undamaged bars and some of 

the tests were performed on bars that had been purposefully damaged 

in the laboratory and then repaired. Three types of damage and repair 

were investigated: 



18 

1. The first type of damage simulated a fracture in the forging 

area near a turnbuckle. Two eyebars ,were cut at a forging near a 

turnbuckle and were then welded back together. Two pieces of cold

rolled bar stock of the same dimensions as the eyebar were spliced 

onto the eyebar over the fracture. The splices extended for at 

least two ft. in each direction from the fracture. 

2. The second tYPe of damage simulated a fracture in the neck 

of an eye. Four bars were cut in the neck of an eye and were then 

welded back together. Pieces of cold-rolled bar stock were spliced 

on over the fracture. The splices extended as far into the eye as 

possible and at least two ft. along the bar past the fracture. 

3. The third type of damage simulated a fracture in the eye. 

In this case, the eye was cut off completely and a new eye was formed 

out of cold-rolled bar stock. The eye was formed by heating the bar 

stock cherry red and bending it into a tear-shape. This new eye 

was then welded onto the original bar. 

Static Tests 

The second part of the laboratory testing program consisted of 

the static testing of specimens taken from 22 eyebars. The specimens 

were cut from the ends of the eyebars and consisted of the eye plus 

three ft. of the bar, except for three specimens which included only 

a turnbuckle section. Nineteen specimens were tested in the original 

condition and three specimens were tested after being repaired. 
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CHAPTER 5. TEST RESULTS AND ANALYSIS 

In Chapters 3 and 4 a summary of the test program and the actual 

events which occurred during the conduct of the test were indicated, 

In subsequent paragraphs in this chapter the results of the best 

and an analysis of their significance will be presented. Each test 

program will be discussed separately,' 

Timber Deck Test 

The ultimate load and equivalent H truck for each of the tests 

are shown in Table 3. The equivalent H truck for the deck tests was 

determined by placing the equivalent rear axle of the truck at mid-span 

of the deck panel. The total ultimate load for deck test 1 (load 

centered on roadway) was 101. 5 kips and for deck test 2 (load placed 

eccentrically) it was 77.4 kips, It should be noted that although 

the loads were applied transversely at six-foot centers (wheel track 

spacing), there were two equal loads spaced longitudinally at the 

third-points. These loads, however, can be related to other behavior 

by determining the equivalent AASHTO truck. For deck test l (centered 

load~ failure occurred at an equivalent H 42 truck and for test 2 

(eccentric load\ at a H 32 truck. 

The primary behavioral indicator for the deck tests was the 

deflection readings taken across the width of the panel at mid-span 

of the panel. The load-deflection curves of the two deck tests at 

various points transversely across the section are shown in Figs. 22 

and 23. These curves, along with the ultimate load data, indicate 

the behavior of the deck throughout the test to failure. 



Table 3. Ultimate loads. 

Test 

Timber Deck 
Centered load 
Edge load 

Truss 
General loading 
Initial failure 
Maximum load at L

4 

Floorbeam 
At L

4 
At L

5 

20 

Ult. Load (kips) 

101.5 
77 .4 

140 
133 

78.5 

66.0 
50.0 

Equiv. H Trucka 

H 42 
H 32 

H 40 
H 30 

aStandard AASHTO H Truck providing the same total static moment as 
provided by the ultimate load 

bH 66.5 at initial fracture of L
5
M

5 

The behavior of deck test 1 was typical of that expected. The 

load deflection curves for that test (Fig. 22) indicate that the 

behavior of the deck up to a total load of 60 kips (H 25 truck) was 

linear. Beyond 60 kips the influence of stringers breaking can easily 

be seen in Fig. 22. 

The deflection readings in Fig. 22 can be combined to form a 

deflection cross section at various load levels (Fig. 24). This 

figure gives an indication of the distribution of the load to each of 

the stringers. From these deflections, the amount of load distributed 

to each of the stringers can be calculated. The figure shows that 

the greatest part of the load is being carried by the stringers around 

and between the load points. It also indicates that the deflection 

increases linearly until the first stringer fails. 

The percentage of the total load carried by the most heavily 

loaded stringer can then be compared to the distribution as determined 
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from the AASHTO Specif ications2 The AASHTO distribution is given 

as S/4 wheels in Sec. 1.3.1, where S is the average stringer spacing 

in feet. For deck testl, the percentage of the total load distributed 

in the most heavily loaded stringer is, according to the Specifications, 

14 percent. 

Table 4 shows the experimental percentage of the load distributed 

to the most heavily loaded stringer and the equivalent distribution 

factor at loads below the load which caused the first stringer to 

fail. It can be seen that the load distribution characteristics remain 

the same in this case (up to stringer cracking). 

Table 4. 

Load 
(kips) 

10 

20 

30 

40 

50 

60 

Experimental percentage 
heavily loaded stringer 
factor for deck test 1. 

Equivalent Distribution 
Factora 

5.33b 

5.49 

5.38 

5.49 

5.49 

5.54 

of the load distributed to the most 
and the equivalent distribution 

Percentage of the Load Distributed to 
The Most Heavily Loaded Stringer 

10.5 

10.2 

10.4 

10.2 

10.2 

10.l 

aAASHTO = 4 from S/4 (Article 1.3.1) 2 

bEquivalent Distribution Factor = (14/10.5)4 5.33 

Table 4 shows that the experimental percentages of the load 

distributed to the most heavily loaded stringer are less than predicted 

from the AASHTO Specifications. Although this loading represents 

the usual load case (centered loading), it should be noted that the 
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eccentric loading (truck near roadway edge) case is more critical 

and will result In the edge stringers receiving more load. The 

Specificatlons cover the most critical case, and thus it would be 

expected that the centered load (deck test 1) would be conservative. 

The the.oretical capacity of the deck for deck test l was 

determined, using data from tests of stringers removed from the bridge, 

to be 104.7 kips. Thus, the actual capacity of the deck (101.5 kips) 

is very close to the theoretical capacity. 

The behavior of deck test 2 (eccentric loading) was also typical 

of that expected. The load-deflection curves for that test (Fig. 23) 

indicate that the behavior of the deck was linear up to a total load 

of 40 kips (H 17 truck). The behavior of the deck shown by Figs. 23a and 

23b is not really indicative of behavior of the entire deck because these 

two deflection dials were near the edge of the panel opposite the 

loading. This portion of the deck underwent only uplift and very 

small deflections. 

The deflection readings in Fig. 23 are combined in the same manner 

as Fig. 22 to form a deflection cross section at various loads (Fig. 25). 

Figure 25 gives an indication of the distribution of the load to each 

of the stringers. This figure also indicates that the major portion 

of the load is being carried by the stringers on the loaded side of 

the panel and that the deflection increases linearly up to a total 

load of 40 kips. 

As in deck test I, the percentage of the total load carried by 

the most heavily loaded stringer can be compared to the distribution 

as determined by the Specifications2 
For deck test 2 the percentage 

of the total load distributed to the most heavily loaded stringer is 



about 15 percent at the equivalent of an H 15 truck. Table 5 

shows the experimental percentage of the load distributed to the most 

heavily loaded stringer at loads below the load which caused the 

first stringer to fail. 

Table 5. Experimental percentage of the load distributed to the most 
heavily loaded stringer and the equivalent distribution 
factor for deck test 2. 

Load Equivalent Distribution Percentage of the Load Distributed 
(kips) Factora The Most Heavily Loaded Stringer 

10 4.00b 13.7 

20 3.69 14.9 

30 3.48 15.8 

40 3.62 15.2 

aAASHTO = 4 from S/4 (Article 1.3.1) 2 

bEquivalent Distribution Factor= (13.7/13.7)4 4.00 

Table 5 indicates that the experimental percentages of the 

load distributed to the most heavily loaded stringer are equal to 

to 

or slightly greater than those predicted by the AASHTO Specifications2 

(13.7 percent). It would be expected that the critical stringer (at edge) 

would carry a higher percentage of the load for this more severe 

eccentric case than in the centered case (test 1). 

Table 5 also indicates that the distribution did change slightly 

as the load increased. This could be attributed to a very high 

moment gradient in the weaker transverse planking, which is the major 

distributing agent. 
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The theoretical capacity of the deck for deck test 2 was 

determined to be 78.5 kips. This is extremely close to the actual. 

capacity of the deck (77.4 kips). 

The results from both deck tests indicate a high degree of 

validity for both the distribution procedure inr:Iicated by AASHT0
2 

and the calculations for deck capacity. It should be noted, however, 

that the timber deck used in the bridge consisted of heavy transverse 

planks to assist distribution. Distribution characteristics could 

vary significantly for other deck types. Thus, although there is a 

good comparison in this case, there is a possibility of need for 

consideration of various deck configurations in distri.bution 

determination. 

Truss Test 

The initial failure of the truss took place at a load of 133 kips. 

This failure was the breaking of one of the hangers which made up 

member L5M5. The applied loading was 106 kips and 27 kips at LS and 

L4, respectively. Additional load was applied in an attempt to 

cause additional members to fail. A large distortion of the lower 

chord of the truss near the load at Ls occurred under this higher 

loading without any failure. The maximum load under this general 

loading was 140 kips; 112 kips at L5 and 28 kips at L4 • The maximum 

vertical deflection at LS at this time was15 in. 

After adjustment of the loading system, all load was applied 

at L4 with the maximum load being 78.S kips. The test program then 

included damaging a member. After member L2u
2 

was cut completely 

through, a load of 39 kips produced a failure of the truss. This 
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resulted in a vertical displacement of the member at the cut 

location. 

The behavioral indicators for the truss test were the deflection 

readings at mid-span and at the three-tenths points and the forces 

in the truss members as computed from the strain gage readings taken 

during the test. The experimental strains were converted to stresses 

assuming that both the wrought iron and steel were elastic-perfectly 

plastic materials. The materials were assumed elastic up to the 

yield strain computed from appropriate values of yield stress and 

modulus of elasticity in Table 1 and asst1ming no increase in stress 

beyond the yield strain. The areas of each individual member were 

used to convert the stresses to forces in the individual members. 

Figure 26, the theoretical and experimental load-deflection curves 

for the vertical deflection at mid-span, indicates that yielding 

began to occur in member L5M5 at a total load of approximately 80 

kips. The curve was relatively linear at loads less than 80 kips 

and above 80 kips the slope of the curve decrease~ indicating yielding 

of member L5M5• The theoretical and experimental load-deflection 

curves for the vertical deflection at L
3 

and L7 also indicate no 

yielding or nonlinearity up to the maximum load at which readings 

were taken. 

Figure 27, the total load-force in truss member L5M5 curve, 

indicates, for this truss, approximately the same behavior as the 

total load-vertical deflection curve at L5 (Fig. 26). Curves that 

illustrate total load-force in other truss members also indicate linear 

behavior up to the maximum load at which readings were taken. 
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The theoretical forces used in Figs. 26 and 27 were obtained 

from a structural analysis of the truss assuming that all of the 

members were held together by pins at the joints. Most of the 

experimental forces determined from strain gage readings agree quite 

closely with the theoretical forces determined from analysis. Some 

of the experimental data for the vertical members is erratic or 

differs considerably in magnitude from the theoretical curve, but 

the slope of the curve is very similar to that of the theoretical 

curve. This behavior is due to the "frozen" condition of the truss 

joints resulting from the rusted members and pins. 

Thus, although the actual conditions in the joints are unknown, 

considering the truss to be pin-connected does provide a realistic 

method of truss analysis for these old bridges. The tremendous 

flexibility of the members that allows accommodation of any joint 

restraint contributes to this conclusion. 

The capacity of the hangers at Ls as calculated using data 

from coupon test& was 110 kips. This was just a few kips greater 

than the load that actually caused the fracture of one of these 

hangers. The actual stress at fracture was 47.4 kips/square in. 

This indicates that the "lap," near where the fracture occurred, 

was about 97 percent effective. An examination of the fracture 

(Fig. 14) indicates also that only a very small portion of the section 

was not fused. The current practice is to assume the "lap" only 

40 percent effective, which is much lower than the actual capacity 

of the member. 
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Floorbeam Test 

The maximum load applied to the floorbeam at L4 was 66.0 kips. 

The compression flange of this floorbeam was originally straight 

(within allowable tolerances). The maximum load applied to the 

floorbeam at L5 was only 50.0 kips, but this floorbeam had an 

initial crookedness of approximately 13/16in. 

The primary behavioral indicators for the f loorbeam tests 

were the vertical deflections of the floorbeam along its length and 

the moments on the floorbeam as computed from strain gage data. 

The load-deflection curves for the floorbeam test at L4 are 

shown in Fig. 28 and indicate that a departure from linearity occurs 

at a load of about 40 kips (H 24 truck). At this same load the 

observation was made that the floorbeam was beginning to buckle 

laterally. This indicates that the natural dapping of the stringers 

provides sufficient lateral support of the floorbeam up to about 60 

percent of the ultimate load. Beyond 60 percent of the ultimate load 

the f loorbeam buckled laterally between the load points and deflected 

away from the stringers between the load points because there was 

no positive tie between the stringers and the floorbeam. 

The load-deflection curves for the floorbeam test at L5 are 

shown in Fig. 29 and indicate a departure from linearity at a load 

of about 35 kips (H 21 truck). At about that load the observation 

was made that the floorbeam was beginning to buckle laterally. This 

departure from linearity thus gave an indication of the initiation 

of lateral buckling in the f loorbeam and again shows that the natural 

<lapping of the stringers provides sufficient lateral support of the 
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floorbeam up to about 70 percent of the ultimate load. Beyond 

70 percent of the ultimate load the floorbeam buckled laterally 

between the load points due to the lack of a positive tie between 

the stringers and the floorbeam. 

The theoretical capacity of the f loorbeam (initially straight) 

was calculated at 62.4 kips. This was based on the assumption that 

the load was uniformly distributed to the f loorbeam and that the 

ends were partially fixed. This agrees quite closely with the actual 

capacity of the floorbeam (65 kips) that was initially straight (within 

allowable tolerances). The theoretical capacity of the floorbeam 

(initially crooked) will be somewhat less than that of the initially 

straight floorbeam. Thus, the actual capacity of the initially 

crooked f loorbeam will agree quite closely with its theoretical 

capacity. 

The final configuration of each of the floorbeams was evidenced 

by a large amount of lateral buckling of the floorbeam, as was 

anticipated. The compression flanges of each floorbeam were tilted 

and severely deformed (Fig. 18). The floorbeam had also pulled 

away from the timber stringers above it. 

Rating 

One of the significant portions of this study was the rating of 

the test span (span 2) and the comparison of that rating with the 

actual capacity. 

The field inspection used as the basis for the rating calculations 

was made by the Maintenance Department of the Iowa State Highway 

Commission. This information was forwarded to the agencies cooperating 
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In this phase of the study. These agencies were the U.S. Army - Corps 

of Engineers, the Highway Division, Iowa Dept. of Transportation and 

Iowa State University. Using this data as a base, each agency computed 

the rating of. the bridge using the MSHTO Maintenance Manual 5 • 

Ratings were requested for each of the three separate portions 

of the truss tested, i.e., the deck, the floorbeams, and the trusses. 

The results of the ratings are shown in Table 6. 

Ratings were requested for each of the three separate portions 

of the truss tested, i.e., the deck, the floorbeams, and the trusses. 

The results of the ratings are shown in Table 6. 

Table 6. Bridge ratings (operating). 

Bridge Agency 

Portion 1 2 

Deck H 13.1 H 8.2 

Floor beam H 2.4a H 7.4 

Truss H 11.4 H 12.7 

aDid not consider beam laterally supported 

binitial fracture of L
5
M

5 

H 

H 

H 

Test 
Capacity 

3 
(Table 2) 

9.4 H 32 

6.7 H 30 

11.9 H 66.Sb 

It can be seen that the ratings are quite consistent for the truss. 

However, there is a variation in the ratings for the floor system. In 

the case of the floorbeams, the assumptions related to lateral support 

of the compression flange are critical. Table 6 shows the effect of 

this assumption in the rating of the f loorbeam. 

Also shown in Table 6 are the capacities as determined from 

the field tests. It can be seen that the critical member as determined 
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by tlw rntlngs (floorbeam) is also the critical member as found from 

t}H• teHtB. 

The relationship of the ratings at operating levels to the 

ultimate capacity range from ratings of only seven percent of ultimate 

capacity for the floorbeam (assuming no lateral support) to about 

40 percent for the deck. Except for the one floorbeam rating, the 

ratings are about 25 percent of capacity. However, it should be 

5 noted that the Manual used for rating indicates a yield point of 

30 ksi for steel made at the time of construction of the Hubby 

Bridge, whereas the actual yield strength of the steel and wrought 

iron was 42 ksi and 35 ksi, respectively. Since the ratings do 

consider dynamic effects and minimum material properties and are 

at the higher level (operating), the ratings appear to be quite 

conservative. 

The results do, however, emphasize the need to accurately 

determine the real lateral support conditions for the beam, the 

realistic load distribution in the deck, and the actual material 

properties. Although, in this case, there were no positive supports, 

the natural <lapping of the stringers did provide this lateral support. 

Service Load Tests - Trusses 

Figures 30-32 illustrate typical experimental and theoretical 

influence lines obtained from the results of the service load tests 

for truss members of the Hubby Bridge and Chestnut Ford Bridge. 

The experimental influence lines were found by calculating the 

forces in the bar using the strain measurements that were recorded for 

each position of the truck. The theoretical influence lines were 
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determined by placing a theoretical truck of the same configuration 

as the experimental truck (Figs. 19 and 20), at each panel point 

and calculating the resultant bar force using determinate analysis. 

Each of the graphs shows the theoretical influence line for the member 

as a solid line. In the testing of the two spans of the Hubby 

Bridge, both the north and the south truss were instrumented. The 

experimental influence lines for both trusses are shown as broken 

lines. Only the influence lines for a truck on the centerline of 

the bridge are shown. In the testing of the one span of the 

Chestnut Ford Bridge only the north truss was instrumented. The 

experimental influence lines are shown as broken lines. 

The results showed that in most cases for the Hubby Bridge and 

in all cases for the Chestnut Ford Bridge, the experimental results 

agree closely with the theoretical values. The general shape of the 

experimental influence line is the same as the shape of the 

theoretical influence line although the magnitude of the experimental 

values is less than the magnitude of the theoretical values. This 

difference is due in part to the partial continuity of the deck 

which was not taken into account in the theoretical analysis, the 

condition of the joints, as well as problems in the instrumentation. 

In the service load tests of both spans of the Hubby Bridge the multiple

channel data acquisition system was not available due to technical 

problems and, thus, the strain measurements were taken using older equip-

ment. This required a longer time period and meant that variances in the 

power line voltage to the strain indicators, indicator drift, and the changing 

temperature in the bridge members occurred. These changes had an indeterminable 

effect on the strain measurements and resulted in unusual behavior in 

several members. 
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In addition to the recording of member strains during the service 

load testing of the Hubby Bridge, truss deflections were also recorded.' The 

experimental deflections were measured during the test with the truck at each 

panel point. The theoretical deflections were determined from an analysis 

of the truss treated as an ideal pin-connected truss. It was found that the 

experimental deflections are much lower than the theoretical deflections. 

This is due to the partial continuity of the deck, which was not taken into 

account in the theoretical analysis, and the frozen conditions of many of the 

pin-connections. 

Thus it appears that the analysis of a pin-connected truss, even 

though the condition ·of the pins is unknown, as a simple determinate 

truss will provide a conservative indication of the bar forces and truss 

deflections. Similar results were found during the static ultimate load 

tests conducted on the Hubby Bridge and reported in the first interim 

2 report. 

Service Load Tests - Floorbeams and Timber Deck 

Figure 33 shows the experimental moment diagram for the floorbeams 

at L3 , L
4

, L5 , and L
6 

compared with the theoretical moment diagrams with 

the truck placed on the centerline and edges of the bridge. The experi

mental moments were determined from strain gages mounted on the floor

beams. The experimental moments fall between the theoretical values 

for fixed ends and pinned ends. The experimental moment diagrams for the 

floorbeams at L3 and L5 tend to agree more closely with the theoretical 

fixed end moments, while the experimental moment diagrams for the 

floorbeams at L
4 

and L
6 

tend to agree more closely with the theoretical 

fixed end moments. This shows the difference in stiffness of the two 
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different types of joints. These results agree with the results reported 

2 in the first interim report. The results here also show the excellent 

distribution properties of the deck. 

For the deck sections, the experimental deflections of the stringers 

were compared with the theoretical deflections obtained assuming the 

stringers to be fixed or pinned at the far ends. In all of the cases 

the experimental deflections were close to the theoretical values for 

stringers with pinned ends, however, when the gross deflections are 

large, as in the case with the truck on the edge, the experimental 

values move away from the values for the theoretical pinned-end 

condition and toward the theoretical values for the fixed end assumption. 

This shows that when the deflections of the deck become large the 

load distribution characteristics improve due to the improved effects 

of the layered deck. 

The load distribution characteristics of the bridge deck can be 

found approximately by using the deflection readings taken during the 

service load testing. The AASHTO specifications for load distribution 

states that the load to be taken by each stringer is found using the 

equation S/D where S is the stringer spacing for the deck in feet and 

D is given as 4 for the Hubby Bridge deck and 4.5 for the Chestnut 

Ford Bridge deck. 

Table 7 lists the experimental values of D found for the deck 

tests on the Hubby and Chestnut Ford Bridges. Table 7 also lists the 

percentage of the total load carried by the most heavily loaded 

stringer. From this table it can be seen that the AASHTO specifications 

are conservative for the timber deck system used on the Hubby Bridge 

and nonconservative for the eccentric truck on the Chestnut Ford Bridge. 
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Hnwt.'Vt't·, it. .should hl' 1101·1..'<I tlint tht• mnxlmum dPfl.ect1on of th<~ 

critic~t1 stringer was essentially the same for both Joad enses 

on the Chestnut Ford Bridge indicating the maximum beam moment 

was the same. 

Table 7. Load distribution factors. 

Test 

Hubby Bridge 

Truck in Center 
Truck on Left 
Truck on Right 

Chestnut Ford Bridge 

Truck in Center 
Truck on Left 

Equivalent Distribution 
Factor 

5.83 
5.71 
5. 77 

4.52* 
3.24* 

Percentage of the Load 
Distributed to the Most 
Heavily Loaded Stringer 

9.6% 
9.8% 
9.7% 

13.6% 
19.0% 

*Maximum deflection of critical stringer the same in both cases. 

Fatigue Tests 

Fatigue tests were performed on 26 tension eyebars taken from the 

Hubby Bridge and four tension eyebars taken from the Chestnut Ford Bridge. 

Some of the eyebars received at the laboratory had kinks and bends in 

them that were formed during the dismantling of the bridges. However, 

these bars were straightened on a rebar bender before testing. The 

residual stresses induced in the eyebars due to the straightening had no 

apparent effect on their fatigue life. This is a reasonable assumption 

since no failures occurred at the points of bending. 

The eyebars tested were all of square cross section and varied from 

3/4 in. to 1-1/8 in. in dimension. 
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Twenty-three of the eyebars were tested in their undamaged (except 

for straightening) condition. The maximum stress for the tests varied 

from 16 to 24 ksi with a uniform minimum stress of two ksi. All of 

the eyebars were tested at a cyclic rate of three-four hertz. The 

results of the fatigue tests on undamaged eyebars can be found in 

Table 8. This table lists the identification number of the eyebar, 

its location on the truss, the dimensions of the bars, the stress 

range that the bar was subjected to, the number of cycles required 

to fail the eyebar, and a diagram illustrating the location of the 

failure. 

Two of the 23 undamaged eyebars fractured in one of the forgings 

joining the turnbuckle to the eyebar. These two eyebars initially 

had large cracks at the point of fracture prior to the beginning 

of the fatigue tests. 

The remaining 21 eyebars each fractured in one of the eyes of 

the eyebar. The fractures in the eyes occurred in two different 

places: 1) at the tip, and 2) at the side of the eye. A careful 

study of Table 8 will show that different bar sizes generally behaved 

in the same way except for the 7/8 in. bars which all failed at 

significantly lower number of stress cycles. This table also shows 

that the two fractures near the turnbuckles occurred at much lower 

numbers of stress cycles than did the fractures in the eyes. 

It is assumed in the inspection and rating of bridges that the 

critical section of the eyebar is the section at a forging, where 

many small cracks exist. Since it is impossible to determine the 

extent of these cracks by inspection, consultants in Iowa usually 

assume, for rating purposes, that there is a reduction in strength 



'!'ob.I c 8. Resu I ts of fnt:jguc' tescs on unda1n~1gt'cl vyeh;:1rs. 

Stress Number Location 
Identification Range of of 

Number* Member Dimensions (ksi) Cycles Fracture 

1!13 L4M3 1 1/8" " l 1/8" 14 1,415,200 --© 
ll6 L4M3 l 1/8" x 1 1/8" 16 446,180 ~ 
ll.5 L4M3 1 1/8" " 1 1/8" 18 121,610 ~ 
lll61"" U4M5 1° X 1" 14 2,033,25o+ 

ll9 U4!15 ln X l" 16 787,410 -----© 
lllO U4Jl!5 1° x 1° 16 371,950 ~ 
C32 l" X 1° 16 500,450 -=© 
IU62'"" U4Jl!5 1° x l" 18 63,040 =::(§):1= 

!18 U4M5 l" x 1" 18 70,570 ~= 
C31 l" X 1° 18 154,960 ~ 
m U4M3 1° X l" 20 102,210 

~ 
!118 U4M5 ln X l" 20 127,320 ~ 
C30 lao X ln 20 173,330 ~2> 
C29 119 x l" 22 63,220 ~ 
1!112 L4M5 7/8" " 7/8" 14 99,200 ~ 
1!120 L4M5 7/8" " 7/8" 15.5 112,750 ~ 
l!!ll3 L4M5 7 /8" " 7 /8" 16 106,100 ~ 
IUS L4M5 7/8" " 7/8" 16 165,280 ~ 
!U4 L4M5 7/8" x 7/8" 20 74,790 ~ 
!U9 L4M5 7/8" x 7/8" 20 94,44(1 .~ 

lll23 LlUl 3/4" " 3/4" 16 314,950 ~ 
'!1124 ** l L5M5 3/4" "' 3/4" 16 329,990 :© 
l!!l25 *" ]. 

L3M3 3/4" " 3/4" 16 314,310 ~ 
l!!l28 L31!3 3/4" l< 3/4" 16 510,200 ~ 

.. . Pref ix C indicates that the eyebar came from the Chestnut Ford Bridge • 
H indicates Hubby Bridge. 

*" Subscript indicates the order of the tests on a single eyebar. 
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of the bar of up to 60 percent. In other words, the forging is 

assumed to be only 40 percent of the strength of the bar. 

In the fatigue tests it was found that the forgings are usually 

not the critical points for fracture. Twenty-one of the 23 eyebars 

tested fractured in the eyes and not in the forgings. This indicates 

that the repeated flexing occurring in the eyes is the critical 

factor determining the remaining fatigue strength of the bar. 

Fatigue tests were performed on nine eyebars taken from the Hubby 

Bridge in order to determine the effect, if any, of repairs on their 

fatigue life. The minimum stress and maximum stress for all of 

the tests were two ksi and 18 ksi, respectively (stress range of 16 ksi). 

All of the tests were run at cyclic rate of three-four hertz. The 

results of the fatigue tests on these damaged and repaired eyebars 

are shown in Table 9. 

One of the nine damaged and repaired eyebars tested was a bar 

that was damaged and repaired at the bridge site an estimated 40 years 

ago (Table 9; H 4). The bar had fractuted at the forging connecting 

the eye to the bar and the repair consisted of welding the pieces 

back together with two additional splice bars (one on each side). 

The design of the repair was inadequate since the splice did not 

extend very far onto the eye. In addition, the weld was of very 

poor quality with very little penetration into the base metal. The 

fatigue failure occurred at the point of repair. 

Six of the eyebars were damaged and repaired in the laboratory. 

Four of these simulated fractures near an eye and two simulated 

fractures near a turnbuckle. The methods of repair for these fractures 

were given in Chapter 4. These repairs proved to be at least as 
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Table 9. Results of fatigue tests on damaged and repaired evebars. 

Type of 
Repair 

Identi
fication 

Number ** Member Dimensions 

Stress 
Range 
(ksi) 

Number 
of Cycles Location of Fracture 

H4 

H2 

Hl 

Hll 

Hl7 

H242* 

H24 3* 

H244* 
H25 2* 

H253* 
H254* 
H26 

H27 

2 

2 

2 

1 

1 

3 

3 

3 

3 

3 

3 

2 

2 

UM l "xl" 
4 5 

U M 111 x 111 

4 5 

L5M5 3/4" x 3/4" 

L5M5 3/4" x 3/4" 

L5M5 3/4" x 3/4" 

L
3
M

3 
3/4"-x 3/4" 

L
3
M

3 
3/4" x 3/L," 

L
3
M

3 
3/4" x 3/4" 

L
3
M

3 
3/4" x 3/4" 

L3M3 3/4" x 3/4" 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

16 

109,370 tt 

295,860 t 

319,550 t 

450,840 t 

130,870 t 

626, 130 t 

398,660 

1,152,560 

537,850 t 

99.880 

1,791,840 

243,960 t 

242,200 t 

* Subscript indicates the order of tests on an eyebar. 

** 

==:~ 

===-'© 
====:::::::~ 

====:::::::2Q> 
~ 

~~~ 
=µ;;;; ·:2) 

~ 

=4 ·~ 
=·: ~ 
===i:@ 

=====© 

1 indicates damage and repair to a forging near a turnbuckle. 
2 indicates damage and repair to a forging at an eye. 
3 indicates damage and repair to an eye. 

t The fracture did not occur near the repair. 

ttThis member was damaged and repaired in the field. 
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strong as the bars since no failures occurred near the repairs. 

Upon testing, five of the eyebars fractured in the eyes, and one of 

the eyebars fractured in the forging near the eye at the end opposite 

from the repaired end. 

Table 10 shows the results of the tests of damaged and repaired 

eyebars. It can be seen from this table that only two eyebars 

repaired in the laboratory fractured due to the presence of a weld. 

These fractures occurred at well over 1,000,000 cycles (many more than 

could be expected in a normal remaining bridge life) in eyebars that 

had been repaired three times. Thus, any of these repair methods 

appears to be appropriate for field use. Care, however, should be 

taken to provide good quality welding. 

Static Tests 

Static tests were performed on 17 specimens from eyebars taken 

from the Hubby Bridge and the Chestnut Ford Bridge. The specimens 

consisted of an eye plus two-four ft. of bar. The bars were of 

square, round, and rectangular cross section with seven, four, and 

six bars of each size tested, respectively. In addition to these 

specimens, two static tests were conducted on specimens consisting 

of round bars with turnbuckles. The results of the static tests 

are shown in Table 10. 

As can be seen in Table 10 all of the round eyebars, including 

the two specimens with turnbuckles, fractured in the bars and not in 

the eyes or forgings. Of the seven square eyebars tested, four fractured 

in the bar and three fractured in the forgings. All of the rectangular 

eyebars fractured in the forgings. 
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Tab.le 10. Results of static tests on undamaged eyebars. 

Yield Ultimate Location 
Identification Stress Stress of 

Number Dimensions (ksi) (ksi) Fracture 

H21 7/8" x 7/8" 32.7 58.4 ===© 
A 3/4" x 3/4" 29.7 44.7 ==:©) 

H 3/4" x 3/4" 31.9 43.9 @ 
B l" x 1" 35 .o 48.0 ---., ===@ 
D l" x l" 36.4 46.1 c© 
E l" x 1" 33. 3 50.2 ===© 
F 1" x l" 36.5 47.0 =IQ) 

I 2.1" x • 81f 36.1 49.4 cQ) 

J 2.1" x . 8" 34.6 45.1 c© 
K 2.111 x . 8" 35.1 46.8 =t© 
L 2.1" x . 8" 28.9 c© 
M 2.1" x . 8" 37. 6 38.7 lQ) 

T 2.1" x • 811 33.9 47.l c© 

N 7/8" Dia 35.9 50.4 =::© 
p 7/8" Dia 35 .1 50.3 =::© 
Q 7/8" Dia 37. 7 48.4 ==© 
s 7/8" Dia 33.4 50.0 ==© 
0 7/8" Dia 35. 3 50.9 ===={§)::i t= 

R 7/8" Dia 35.5 44.6 = i:(§):= 
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Table 11 shows the average yield and ultimate stresses for the 

different shapes of eyebars and the different locations for the 

fractures. 

Table 11. Summary - static test results. 

Type Location Average Range In Average 
of of Yield Ultimate Ultimate 

Eye bar Fracture Stress Stress Stress 

Round bar 35. 5 ksi 44.6-50.0 49.1 ksi 

Rectangular forging 35.5 ksi 28.9-49.4 42. 7 ksi 

Square bar 32.7 ksi 44. 7-58.4 50.3 ksi 

Square forging 34.5 ksi 43.9-47.0 45.7 ksi 

It can be seen from Table 11 that the average yield stress was 

approximately the same for all of the eyebars. The average ultimate 

stress, however, varied for the different types of eyebars. The 

average ultimate stress for the square eyebars that fractured in the 

forgings was almost five ksi less than the average ultimate stress for 

the square eyebars that fractured in the bar away from any forgings. 

Thus, the forgings that fractured in the square bars were 93 percent 

effective on the average with a lower bound of 90 percent. The 

forgings in the rectangular bars were 87 percent effective on the 

average with a lower bound of 59 percent. 

Static tests were also performed on three damaged and repaired 

specimens of square cross section. Each of the specimens was damaged 

and repaired by one of the methods described in Chapter 4. One of 

the specimens simulated a fracture and repair at the forging near a 

turnbuckle. 
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The results of the static tests on damaged and repaired eyebars 

are shown i.n Table 12. It can be seen from thi.s table that if repairs 

to dmnaged bars are made similarly to those used in these tests, then 

the ultimate strength of the bar will be unaffected by the repair. 

The ultimate strength of the bar is slightly less than that 

listed in Table 1 because the stress in the eyebars was calculated 

using the gross cross section of the bar. This shows that after 

several years of rusting and corroding, the bars are still a nominal 

94 percent effective. 



Table 12. Results of static tests on damaged and repaired eyebars. 

Identification Type of Yield Stress Ultimate Stress 
Number Repair* Dimensions (ksi) (ksi) 

u1 3 3/4"x3/4" 32.1 47.3 

uz 3 3/4"x3/4" 

v 1 l 11Xl11 33.8 48.S 

wl 2 l"xl" 36.8 48.0 

W2 2 l"xl" 

*1 indicates damage and repair to a forging near a turnbuckle 
2 indicates damage and repair to a forging at an eye 
3 indicates damage and repair to an eye 

Ultimate Force 
(kips) 

26.5 

Location of 
Fracture 

64.6 I ;2) 

48.5 =~ 

83.0 



44 

CHAPTER 6. SUMMARY 

As a result of the construction of the Saylorville Dam and 

Reservoir on the Des Moines River, six highway bridges were scheduled 

for removal. Two of these, old high-truss pin-connected single-lane 

bridges, were selected for a testing program which included ultimate 

and service load tests in the field and fatigue and static tests on 

tension eye bars in the laboratory. 

Ultimate Load Tests 

The purpose of the ultimate load tests was to relate design and 

rating procedures presently used in bridge design to the field 

behavior of this type of truss bridge. The general objective of the 

test program was to provide data on the behavior of this bridge type 

in the overload range up to collapse. 

The information available on overload and ultimate behavior of 

actual bridges is limited mainly to beam-and-slab type bridges. 

No information is available on the behavior of the old high-truss 

bridges typical of those found in Iowa and throughout other parts 

of the country. This load test program is intended to provide that 

information on the ultimate load carrying capability through the 

testing of a typical old truss bridge. 

The test program consisted of ultimate load testing of one span 

of the bridge, ultimate load testing of two I-shaped floorbeams, and 

ultimate load testing of two panels of the timber deck. The truss 

span was tested in an "as is" condition with loads simulating actual 

truck loading. After initial failure the truss was damaged and 
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retested in this condition. The floorbeams were tested with loads 

to simulate an axle loading. One of the floorbeams had some initial 

crookedness, while the other was essentially straight. One of the 

timber deck tests was performed with loads simulating a truck 

centered on the deck panel and the other with loads placed three ft. 

off center to simulate a truck on the edge of the deck panel. 

The total ultimate load for deck test 1 (load centered on 

roadway) was 101.5 kips and for deck test 2 (load placed eccentrically) 

it was 77.4 kips. For deck test 1 this is equivalent to a load of 

25.4 kips at each of the load points, with the corresponding maximum 

moment on the total deck panel at 279i4 ft-kips or 17.5 ft-kips per 

foot of width of the deck panel. For deck test 2 the equivalent 

load and moments are 19.4 kips, 212.8 ft-kips, and 13.3 ft-kips per 

foot of width, respectively. It should be noted that although the 

loads were applied transversely at 6-foot centers (wheel track spacing), 

there were two equal loads spaced longitudinally at the third-points. 

The loads, however, can be related to other behavior by determining 

the equivalent AASHTO H truck. For deck test 1 (centered load) 

failure occurred at an equivalent H 42 truck and for test 2 (eccentric 

load) at a H 32 truck. 

The behavior of the deck at loads up to failure of one of the 

stringers compared quite well with that predicted by the AASHTO 

S .f. . 2 peci 1cat1ons The current load distribution criteria indicate 

that each stringer should be designed for about 14 percent of the 

total load on the bridge. The test results gave only about 10 percent 

for a centered load, but for the eccentric severe loading, the most 

heavily loaded stringer carried about 15 percent of the total load. 
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The initial failure of the truss took p.l.aee at a load of 133 kl.ps. 

This failure was the breaking of one of the hangers which made up 

member L5M5 • The applied loading was 106 kips and 27 kips at LS 

and L
4

, respectively. Additional load was applied in an attempt to 

get additional members to fail. A large distortion of the lower 

chord of the truss near the load at Ls occurred under this higher 

loading without any failure. The maximum load under this general 

loading was 140 kips (H 70 truck), 112 kips at LS, and 28 kips at L4• 

The maximum vertical deflection at LS at this time was lS inches. 

The fracture load for the vertical failure was 97 percent of the 

calculated load based on the full section. The fracture section 

confirmed that the section was nearly fully fused. This compares 

to the "40 percent effective" used by many designers in evaluating 

structures of this type. 

After adjustment of the loading system, all load was applied at 

L4 with the maximum load being 78.S kips. The test program then 

included damaging a member. After member L
2
u2 was cut completely 

through, a load of 39 kips produced failure of the truss. This 

resulted in a vertical displacement of the member at the cut location. 

The maximum load applied to the floorbeam at L4 was 66.0 kips. 

The compression flange of this floorbeam was originally straight 

(within allowable tolerances). This load was approximately equal 

to that determined from theory. 

The maximum load applied to the floorbeam at Ls was SO.O kips. 

This floorbeam had an initial crookedness of approximately 13/16 in. 
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Service Load and Supplementary Tests 

The purpose of the service load tests was to relate design and 

rating procedures presently used to the field behavior of this type 

of truss bridge. Another objective of this phase of the program was 

to provide data on the behavior of this bridge type in the service 

load range and also, data on the remaining fatigue life of the 

tension members in the truss. 

The information available on service-load behavior of actual 

bridges is limited mainly to beam-and-slab type bridges. This test 

program was intended to provide information on the behavior of high

t russ bridges. 

The test program consisted of service load testing two spans of 

the Hubby Bridge plus one span of the Chestnut Ford Bridge, and fatigue 

and static testing of eyebars received from the above mentioned 

bridges. The service load tests were performed using loaded county 

gravel trucks (approximately H 15) to apply the loads to the bridges. 

Strain readings were taken to determine the forces in members 

of the trusses. Also, deflection readings were taken of the trusses 

in one span and of the deck and strain readings in the f loorbeams to 

determine the moments. 

The experimental forces in the members of the truss agreed with 

the forces found theoretically using a determinate analysis. There 

were some discrepancies but these were mainly due to problems in 

the instrumentation. The experimental deflections of the trusses in 

one span were found to be much smaller than the theoretical deflections. 
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This was due to the partial continuity of the deck which was not 

taken into account in the theoretical analysis, and also due to 

the partial rigidity of the joints. 

Deck deflections were measured at the middle of the panels with 

the truck on the centerline of the bridge and on the edges of the 

bridge. The experimental deflections were between the theoretical 

values for stringers assuming fixed ends and assuming pinned ends. 

The behavior of the deck compared quite well with that predicted by 

the AASHTO Specifications4 The current load distribution criteria, 

assuming S/4 as the distribution factor, indicates that for the 

Hubby Bridge each stringer should be designed for about 14 percent 

of the total weight of the truck (28 percent of a wheel load, front 

and rear). The test results indicated a distribution value of 10 

percent to each stringer for both the centered load and the eccentric 

load. For the Chestnut Ford Bridges, however, the current load 

distribution criteria, assuming S/4.5 as the distribution factor, 

indicates that each stringer should be designed for 14 percent of the 

total weight of the truck. The test results indicate a value of 14 

percent for the centered load and 19 percent for the eccentric load. 

Moment cross sections for the floorbeams were found experimentally 

with the rear axle of the truck located over the floorbeams. The 

experimental results were between the theoretical values for a floorbeam 

assumed fixed at the ends and assumed pinned at the ends. Floorbeams 

3 and 5 from the Hubby Bridge tended to behave more closely to the 

pinned end assumption while floorbeams 4 and 6 tended to agree more 

closely with the fixed end assumption. 
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In the fatigue tests of the tension eyebars it was found that 

the eye of the bar tended to be more susceptable to fatigue failure 

than the forgings at the intersection between the eye and the bar. 

Twenty-one of the 23 undamaged bars fractured in the eye while the 

remaining two eyebars fractured in forgings, where large initial 

cracks were present. Of the nine eyebars that were damaged and repaired 

and then tested in fatigue, only one eyebar failed in the first 

repair and it was a repair that had been made in the field over 40 

years ago. 

In the static tests different types of eyebars were found to 

fail in different fashions but consistent for the particular type. 

All of the rectangular eyebars fractured in the forgings while all 

of the round eyebars fractured in the bars away from the forgings. 

The square bars fractured both in the forgings as well as in the 

bars. The minimum percentage of effectiveness found in the tests 

was 59 percent. This compares with the 40 percent effective rule 

usually assumed for rating of eyebars as commonly used in Iowa. 

The fatigue strength of the eyebars varied over a wide range, 

but it was seen that for a stress range of 14 ksi, the fatigue life 

of the bars was approaching 2,000,000 cycles. In the Hubby Bridge, 

an H 10.7 truck, in the eccentric position with an included impact 

factor of 30 percent will produce a live load stress range in a 

hanger of 14 ksi stress range. For the Chestnut Ford Bridge an H 18.3 

will produce the same stress range, Assuming 10 loaded trucks of 

this type a day, every day of the year, it would take 28 years to 

reach 100,000 cycles. 
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It can be seen from this that the weight of this type of truck 

ls substantial.ly more than that usually carried by the bridges and 

thu,;, It would not be expected that there would be any reduction in 

the fatigue life of the members. This was observed in the overall 

results of the fatigue study. 
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CHAPTER 7 • CONCLUSIONS 

As a result of the tests performed on these two bridges, the 

following conclusions were reached. 

Ultimate Load Tests 

1. The behavior of the timber deck was linear up to about 

one-half of the ultimate load for each deck test. 

2. For deck test 1 (centered load) the design percentage of the 

total load distributed to the most heavily loaded stringer, 

based on the AASHTO Specifications, is greater than the 

experimental percentage of the load distributed to the most 

heavily loaded stringer based on the deck deflection at all 

load levels for which this is valid. 

3. The theoretical capacity of the deck for deck test 1 is 

approximately equal to the experimentally determined capacity of 

the deck. 

4. For deck test 2 (eccentric load) the design percentage of the 

total load distributed to the most heavily loaded stringers, 

based on the AASHTO Specifications, is equal to or less than 

the experimental percentage of the load distributed to the most 

heavily loaded stringers based on the deck deflection at all 

load levels for which this is valid. 

5. The theoretical capacity of the deck for deck test 2 is 

approximately equal to the experimentally determined capacity 

of the deck. 

6. The deflections of the timber deck for both tests generally 

lie within the theoretical bounds. 

7. The experimentally determined forces for the truss members agree 

closely with the forces for the same members from analysis. This 

indicates that the assumption of pinned end members is valid for 

this particular truss. 
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8. The theoretical capacity of the hangers at L5 agrees quite 

closely with the load that actually caused the fracture of one 

of these hangers. 

9. The current practice of assuming the "lap" of an eye-bar to 

be only 40 percent effective is quite conservative. (Additional 

tests are required before any recommendation on changing this 

assumption is warranted). 

10. The natural <lapping of the stringers provides sufficient lateral 

support of the floorbeam up to approximately 60 percent of the 

ultimate load. 

11. The theoretical capacity of each floorbeam was approximately 

equal to the actual capacity of each floorbeam. 

12. The ratings of the bridge and its components average about 25 

percent of capacity. The ratings were fairly consistent except 

for the floorbeams, where the assumption on lateral support 

conditions for the compression flange caused considerable 

variation 

Service Load Tests 

1. Fatigue fractures tend to be governed by the characteristics 

of the eye while the static fractures tend to be governed 

by the quality of the forgings. 

2. The fatigue life of the eyebars after being damaged and 

repaired was not appreciably different from that of an 

undamaged eyebar. 

3. The experimentally determined forces of the truss members 

for both the Hubby Bridge and Chestnut Ford Bridge agree 

closely with the forces found from the theoretical analysis 

assuming pinned connections, this indicates that the assumption 

of pinned end members is valid for these particular trusses. 

4. Since the truck used for the experimental loading was 

approximately an H 15 and all ratings for the critical bridge 
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"d d b h i . 2 1 components prov1 e y t e cooperat ng agencies were ess 

than H 15 (ranged from H 2 - H 13), the results show that 

<kterminate methods are valid for analyzing the bridge for 

l.onds :ln the range of rating levels. 

5. The current practice of assuming the "lap", or forging, in 

an eyebar to be only 40 percent effective is conservative. 

The minimum found during testing was 59 percent. 

6. The current AASHTO Load Distribution criteria for the Hubby 

Bridge of S/4 is more than adequate (S/4.5 could be used 

if it is considered to be a multiple layer bridge deck.) 

7. The current AASHTO Load Distribution criteria for the Chest

nut Ford Bridge deck of S/4.5 (strip type deck) agrees very 

closely to the centrally loaded truck but does not agree 

with the truck when in the eccentric position. This may 

be misleading in that the maximum deflection measured in 

each case was essentially the same (i.e., the same maximum 

moment). 
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CHAPTER 8. PROJECT FINDINGS 

On the basis of the research program conducted, the following 

findings can be stated. These findings are, of course, based on 

limited tests and may be subject to modifications as additional 

information becomes available. Although these findings are 

developed for this type of bridge or components, many of the 

findings can be applied judiciously to bridges of a similar nature. 

1. The ultimate strength of a bridge truss, as determined 

by using conventional determinate analysis of the truss, 

is a reasonable estimate of the actual ultimate strength of 

the truss. 

2. The ultimate strength of the bridge (including its components) 

is substantially higher in all cases than that found using 

present rating criteria (operating level). 

3. Because of the methods used in the fabrication and design, 

a natural indeterminancy is built into the system. Thus, 

unless a key member of the bridge is ruptured, such as an 

upper or lower chord, the bridge will not collapse catas

trophically and will be able to sustain a reasonable load. 

4. Gross deflections of the trusses and the floor system will 

occur prior to failure. 

5. The live load stresses in the truss member are generally 

slightly .lower than those predicted using a conventional 

determinate analysis. 

6. The remaining fatigue life of the tension members of the 

truss is such that with reasonable levels of live load, 

bridge life should be determined by its serviceability 

and degree of deterioration and not by fatigue considerations. 

7. If a failure in a member of the truss should occur due to 

an accident, etc., repair procedures such as those used in 

the supplementary tests for fatigue and static strength will 
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result in the structure having essentially the same load 

capacity in static as well as fatigue strength. 

8. The static strength of the forging at the eye of the bar 

can be assumed to be about 75 percent of the ultimate 

strength of the bar cross section. The average of the 

static tests was higher than this value, but there was one 

bar lower, therefore, this value appears to be a reasonable 

compromise which can be used for rating purposes. 

9. The only areas of the bridge which cannot be effectively 

inspected are the joints where the eyebars intersect. 

However, in item no. 6 it was stated that the load carrying 

capacity of the bridge should not be determined by the 

fatigue strength of the eyebars. Therefore, the forgings 

of the eye to the bar should be closely inspected to 

detect flaws which would be critical in the case of an 

occasional over load. 

10. Current AASHTO load distribution criteria are adequate 

for the design and rating of the floor system, although 

sometimes conservative. 
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Fig. la. Photographs of the Hubby Bridge. 
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Fig. lb. Photographs of the Chestnut Ford Bridge. 
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Fig. 6, Photograph of deck test 1 setup., 
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Fig. 8, Photograph of deck test 2 setup. 
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Fig. 13, Photograph showing location 
of failure of member L
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Fig. 18. Photograph of buckling of compression flange of floorbeam 5. 
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Fig. 21. Photograph of fatigue apparatus. 
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