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1 Executive Summary 

 

The Iowa Department of Natural Resources (IDNR), in cooperation with the University 

Hygienic Laboratory (UHL), has established procedures for assessing the biological 

health of Iowa’s wadeable rivers and streams.  Biological assessment (bioassessment) is a 

key component of IDNR's water quality monitoring and assessment functions, including:  

problem investigation, project evaluation, status/trend monitoring, and Total Maximum 

Daily Load (TMDL) development.  Bioassessment results are incorporated in the biennial 

report of the status of water quality in Iowa and list of impaired waters required by 

Sections 305(b) and 303(d) of the Federal Clean Water Act.  The bioassessment 

framework described in this document can also serve as a foundation for establishing 

biological criteria (biocriteria) in Iowa's Water Quality Standards (IAC Chapter 567:61).  

The framework has four major components: 1) ecoregions, 2) reference stream sites, 3) 

sampling procedures, and 4) biological indices.   

 

1.1 Bioassessment Components 

Ecoregions 

 

Ecological regions (ecoregions) are areas in which there is relative similarity among 

ecological systems such as lakes, streams, or wetlands.  They are a useful geographic 

framework for water quality management and research because they reduce the amount 

of natural variability, thereby making it easier to detect environmental changes caused by 

human activities.  IDNR uses ecoregions as a geographic template for defining stream 

reference conditions and developing biological criteria.  Ecoregions are also a major 

consideration in the development of nutrient criteria for surface waters. 

 

In 1993, U.S. EPA geographic researchers produced a refined map of Iowa's ecoregions. 

Since then minor changes to Iowa's map have resulted from ecoregion refinement 
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projects in surrounding states.  The current map of Iowa's ecoregions consists of ten 

Level IV Ecoregions (Figure 1-1).  

 

Reference Sites  

 

Reference sites in Iowa represent contemporary stream conditions that are least disturbed 

by human activities.  Representation is also an important consideration.  Reference sites 

strive to represent desirable, natural qualities that are attainable among other streams 

within the same ecoregion.  As they are used in bioassessment, reference sites define 

biological conditions against which other streams are compared.  Therefore, they should 

not represent stream conditions that are anomalous or unattainable within the ecoregion. 

 

As part of the 1993 ecoregion refinement project, the U.S. EPA and the IDNR established 

a list of 110 candidate reference stream sites.  From 1994-1998, a sampling project was 

conducted to gather baseline data for biological criteria development.  Biological, 

chemical, and physical stream characteristics of approximately 100 candidate reference 

sites were sampled and analyzed.  Potential impacts from point sources and nonpoint 

sources of pollution were also evaluated.  Candidate sites that were inconsistent with 

reference quality objectives were eliminated. 

 

Currently, there are 96 reference sites used by IDNR for stream biological assessment 

purposes (Figure 1-1).  Reference site evaluation is an ongoing process.  Reference sites 

and reference conditions for bioassessment are the subject of a significant amount of 

research and development throughout the U.S.  The IDNR is working to improve the 

reference site evaluation process, and will utilize new methods and technology as they 

become available.  
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Figure 1-1.  Iowa ecoregions and wadeable stream reference sites:  1994–2000. 

 

Sampling Procedures 

 

Standard procedures for sampling stream benthic macroinvertebrates and fish 

assemblages are used to ensure data consistency between sampling sites and sampling 

years.  Sampling is conducted during a three-month index period (July 15 – October 15) 

in which stream conditions and the aquatic community are relatively stable.  A 

representative reach of stream ranging from 150-350 meters in length is defined as the 

sampling area. 

 

Two types of benthic macroinvertebrate samples are collected at each site:  1) Standard-

Habitat samples are collected from rock or wood substrates in flowing water; 2) a Multi-
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Habitat sample is collected by handpicking organisms from all identifiable and accessible 

types of benthic habitat in the sampling area.  The multi-habitat sample data improve the 

estimation of taxa richness for the entire sample reach.  Benthic macroinvertebrates are 

identified in the laboratory to the lowest practical taxonomic endpoint.   

 

Fish are sampled using direct current (DC) electrofishing gear.  In shallow streams, one 

or more battery-powered backpack shockers are used, and a tote barge, generator-

powered shocker is used in deeper, wadeable streams.  Fish are collected in one pass 

through the sampling reach proceeding downstream to upstream.  The number of 

individuals of each species is recorded, and individual fish are examined for external 

abnormalities, such as deformities, eroded fins, lesions, parasites, and tumors.  Most fish 

are identified to species in the field; however, small or difficult fish to identify are 

examined under a dissecting microscope in the laboratory. 

 

Physical habitat is systematically evaluated at each stream sampling site.  A series of 

instream and riparian habitat variables are estimated or measured at ten, stream channel 

transects that are evenly spaced throughout the sampling reach.  A summary of physical 

habitat characteristics is compiled for the sampling reach, and the summary data are used 

to complete a habitat assessment form which yields a qualitative stream habitat score and 

rating (e.g., poor, fair, good, excellent). 

 

Biological Indices 

 

Biological sampling data from reference sites were used to develop a Benthic 

Macroinvertebrate Index of Biotic Integrity (BMIBI) and a Fish Index of Biotic Integrity 

(FIBI).  The BMIBI and FIBI are described as multi-metric or composite indices because 

they combine several individual measures or metrics.  A metric is an ecologically 

relevant and quantifiable attribute of the aquatic biological community.  A useful metric 

can be measured cost-effectively and reliably, and will respond predictably to 

environmental disturbances. 
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Numerous candidate biological metrics were systematically reviewed, and the best- 

performing benthic macroinvertebrate and fish data metrics were included in the BMIBI 

and FIBI, respectively.  Each index is comprised of twelve metrics that reflect a broad 

range of aquatic community attributes (Table 1-1).  Reference site sampling data were 

used to develop metric calculation formulas that transform raw metric values into a 

normalized scoring range from 0 (poor) –10 (optimum).  The normalized metric scores 

are then combined to obtain the BMIBI and FIBI scores, which both have a possible 

scoring range from 0 (worst) – 100 (best).  Qualitative categories for BMIBI and FIBI 

scores are listed in Table 1-2.  The scoring ranges were developed from an examination 

of the biological attributes exhibited by stream bioassessment sites encompassing the full 

range of BMIBI scores from low to high.  A more detailed description of the BMIBI and 

FIBI development and calibration process is provided in Part 5. 

 
 
 
Table 1-1.  Data metrics of the Benthic Macroinvertebrate Index of Biotic Integrity 

(BMIBI) and the Fish Index of Biotic Integrity (FIBI). 
 

Benthic Macroinvertebrate Index of 
Biotic Integrity (BMIBI) 

Fish Index of Biotic Integrity  
(FIBI) 

1. MH*-taxa richness 1. # native fish species  
2. SH*-taxa richness 2. # sucker species 
3. MH-EPT richness 3. # sensitive species 
4. SH-EPT richness 4. # benthic invertivore species 
5. MH-sensitive taxa 5. % 3-dominant fish species 
6. % 3-dominant taxa (SH) 6. % benthic invertivores 
7. Biotic index (SH) 7. % omnivores 
8. % EPT (SH) 8. % top carnivores 
9. % Chironomidae (SH) 9. % simple lithophil spawners 
10. % Ephemeroptera (SH) 10. fish assemblage tolerance index 
11. % Scrapers (SH) 11. adjusted catch per unit effort 
12. % Dom. functional feeding group (SH) 12. % fish with DELTs 
* MH, Multi-habitat sample; SH, Standard-habitat sample. 
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Table 1-2.  Qualitative scoring guidelines for the BMIBI and FIBI.  

 

Biological Condition 
Rating 

Benthic Macroinvertebrate 
Index of Biotic Integrity 

(BMIBI) 

Fish Index of Biotic 
Integrity  

(FIBI) 
Poor 0 - 30 0 -25 

Fair 31 - 55 26 - 50 

Good 56 - 75 51 - 70 

Excellent 76 - 100 71 - 100 

 

Iowa’s rivers and streams have seen significant historical losses of native fish and mussel 

species caused by long-term physical habitat and water quality degradation.  

Consequently, biological conditions in Iowa’s rivers and streams today are different, and 

probably significantly lower quality than historic, pre-European settlement conditions.  

The BMIBI and FIBI are calibrated using contemporary reference sites that define levels 

of biological condition ranging from poor to excellent.  It is important to recognize the 

range of conditions that are measurable using these indexes probably do not encompass 

or have the ability to distinguish natural, unaltered biological integrity.  Figure 1-2  shows 

the relationship of the BMIBI and FIBI rating scale in relation to a conceptualized tiered 

biological condition gradient (Davies 2003; Jackson 2003).  The biocondition gradient 

provides a consistent framework to convey biological information, and can serve as a 

template for refining aquatic life use designations. 
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Figure 1-2.  Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) and Fish Index 
of Biotic Integrity (FIBI) qualitative ratings (excellent, good, fair, poor) in 
relation to a conceptual tiered biological condition gradient (after Davies 
2003). 
 
 

Biotic Index Performance 

 

For a biological indicator to be useful, it must respond predictably to changes in stream 

environmental conditions.  The BMIBI and FIBI both correlate with a number of physical 

habitat and water quality variables including bank stability, % fine sediments, riparian 

buffer condition, total phosphorus, and total suspended solids.  Both indices show a 

uniform response across a gradient of stream environmental quality.  For example, Figure 

1-3 shows the relationship between FIBI score and the Barbour and Stribling (1991) 

qualitative physical habitat index.  Both habitat quality and ecoregion are important 

determinants of stream biological condition.  Multiple regression analysis found that 56% 
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of the variance in FIBI scores could be explained by the combination of habitat quality 

score and ecoregion (r2=0.56).  The BMIBI was also significantly related with habitat 

quality and ecoregion, but less strongly (r2=0.32) than the FIBI. 

 

 
Figure 1-3.  Relationship of Fish Index of Biotic Integrity (FIBI) and the Barbour and 

Stribling (1991) habitat quality index.  Sampling data are from 1994-1998 
reference sites and test sites. 

 

 

Another characteristic of a useful biological indicator is an ability to distinguish least- 

disturbed sites from heavily impacted sites.  A statistical analysis of BMIBI and FIBI 

scores from reference sites and test sites was conducted in two ecoregions where a 

sufficient number of sites had been sampled.  Impacted sites were selected to represent 

several of Iowa's common stream impacts including channelization, streamside livestock 

grazing, urban runoff, and wastewater discharges.  In both ecoregions, differences 

between reference site and test site mean scores of the BMIBI and the FIBI were 

statistically significant (p<0.05).  Figure 1-4 shows the ranges of BMIBI scores from 

reference sites and test sites in two ecoregions. 
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Figure 1-4.  Box and whisker plot comparison of candidate reference site and impacted 

site BMIBI scores from the Des Moines Lobe (47b) and Rolling Loess 
Prairies (47f) ecoregions. 

 

 
1.2 Sampling Results and Data Analysis 
 

Species Richness 

 

Iowa's surface waters supports a moderate level of fish species diversity compared to 

states located in other regions of the United States.  For example, less fish diversity 

occurs in states located in the arid Southwest, while greater diversity is found in aquatic 

habitat-rich states of the Southeast.  Of the 139 species thought to be native inhabitants of 

Iowa’s surface waters, 95 fish species were collected during the 1994-1998 wadeable 

stream reference site and test site sampling phase.  In 2001, a single Topeka shiner 

(Notropis topeka) was collected from Buttrick Creek in Greene County; otherwise, no 

other federally endangered species have been collected.  A number of fish species listed 
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as threatened (T) or endangered (E) within Iowa have been documented, including: 

American brook lamprey (Lampetra appendix) (T), black redhorse (Moxostoma 

duquesnei) (T), burbot (Lota lota) (T), freckled madtom (Noturus nocturnus) (E), grass 

pickerel (Esox americanus) (T), orangethroat darter (Etheostoma spectabile) (T), and 

Topeka shiner (Notropis topeka) (T).  Several non-native fish species were collected, 

including:  brown trout (Salmo trutta); common carp (Cyprinus carpio); goldfish 

(Carassius auratus); grass carp (Ctenopharyngodon idella); rainbow trout 

(Oncorhynchus mykiss).  

 

During the initial sampling phase, a relatively small number of fish species (9), mostly 

minnows (Cyprindae), comprised the majority (62%) of fish collected.  The total number 

of fish species sampled from streams in the Mississippi River drainage basin (90) was 

more than double the total number of species found in streams located in the Missouri 

River drainage basin (44).  Sampling sites located in the Rolling Loess Prairies ecoregion 

(47f), which includes parts of five major river systems, had the highest total number of 

fish species (62).  The average number of native fish species per sampling site was 

highest (21) among reference sites in the Iowan Surface (47c) and lowest (8) among 

reference sites located in the Steeply Rolling Loess Prairies (47e).  

 

The project has helped to fill information gaps pertaining to Iowa’s benthic 

macroinvertebrate populations.  Through 2001, approximately 435 distinct benthic 

macroinvertebrate taxa had been collected.  The number of taxa increases each year as 

sampling continues.  The University Hygienic Laboratory (UHL) documents benthic 

macroinvertebrate collections and maintains a specimen voucher collection.  UHL has 

worked with outside experts to document many new collection records for Iowa. 

 

Aquatic insects are by far the most abundant and diverse group of benthic 

macroinvertebrates collected.  In 1994-1998 standard-habitat samples, 95% of the total 

number of organisms and 81% of the benthic macroinvertebrate taxa were aquatic 

insects.   Benthic macroinvertebrate diversity varied among Iowa's ecoregions.  The 

average number of benthic macroinvertebrate taxa per multi-habitat sample was highest 
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(36) for stream sites located in the Iowan Surface (47c) and lowest (22) among sites in 

the Steeply Rolling Loess Prairies (47e). 

 

Many species of freshwater mussels are included on the state and federal lists of 

threatened and endangered species.  The sampling methods and objectives of this project 

are not designed to document the occurrence of mussel species in Iowa’s streams.  

Because of the imperiled status of many species, live mussels typically were not 

disturbed when observed during sampling.  Only a small number of mussel species have 

been collected since the project began, and none of these is listed as threatened or 

endangered. 

 

Stream Classification 

 

Statistical analyses were conducted to evaluate the usefulness of ecoregions as a stream 

classification scheme.  A modest, but significant amount of the variability in species 

composition and biotic index scores was explained by ecoregion.  Significant differences 

were found between some, but not all ecoregions.  Correspondence to ecoregion was 

stronger among fish assemblages than benthic macroinvertebrate assemblages.  Stream 

classification strength of ecoregions was stronger than several other landscape 

classification schemes tested (e.g., landform, hydrologic basins, stream order).  All 

regional classification schemes were relatively weak in terms of the total amount of 

variation in biological attributes that could be attributed to any given classification 

scheme.  Additional testing found that classification strength could be improved by 

adding stream size and habitat categories.   For example, variability of FIBI scores was 

reduced when sample sites were placed in habitat categories defined by the amount of 

rock substrate, cobble-size substrate, and riffle habitat. 
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Aquatic Biota and Stream Environmental Relationships 

 

Multivariate data analysis was performed to examine relationships between stream 

biological assemblages and environmental variables.  Approximately 45 stream variables 

were included in the analysis.  The stream variables most strongly correlated with 

differences in benthic macroinvertebrate and fish species composition include: channel 

slope (gradient), coarse rock substrate,  nitrate+nitrite-nitrogen, riffle habitat, and 

watershed size.  The benthic macroinvertebrate and fish assemblages found in Northeast 

Iowa streams are least similar to assemblages found in other regions of the state.  Trout 

and other aquatic species that require clear, cool water are more likely to occur in 

Northeast Iowa streams where groundwater inputs are larger than in other regions. 

 

1.3 Aquatic Life Use Support Assessments 
 

One of the primary uses of bioassessment data is to assess the support status of stream 

aquatic life uses.  As required by Section 305(b) of the Federal Clean Water Act, every 

two years IDNR reports to U.S. EPA and the public on the status of beneficial designated 

uses.  The bioassessment framework described in this report has been utilized for the last 

two 305(b) cycles (2000, 2002).  Bioassessment data from stream segments designated as 

Limited Resource Warm Water [B(LR)] or Significant Resource Warm Water [B(WW)] 

were compared to biological impairment thresholds established from reference site 

sample data.  For the 2002 report, impairment thresholds were established for each 

ecoregion using the 25th percentiles of BMIBI and FIBI scores from 1994-2001 reference 

site samples (see Table 6-1).  Aquatic life impairment thresholds are specified by 

ecoregion and stream habitat class, and they range from fair to excellent ratings for 

benthic macroinvertebrate and fish assemblage condition. 

 

Figure 1-5 displays the assessment results from two sampling intervals used in preparing 

the 2000 and 2002 Section 305(b) reports.  69% of stream sites sampled from 1994-1998 

were assessed as supporting aquatic life uses (fully supporting or fully supporting/ 

threatened) compared to 53% supporting from the 1999-2001 sampling interval.   
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Figure 1-5.  Stream aquatic life use support assessments utilizing benthic 
macroinvertebrate and fish assemblage sample data. 

 

 

Conversely, 31% of 1994-1998 sample sites were assessed as biologically impaired 

(partially supporting or not supporting) compared to 47% from 1999-2001.  The data set 

(1994-1998) used for the 2000 305(b) report consisted of approximately two-thirds 

reference sites and one-third test sites and watershed assessment sites.  The 1999-2001 

data set used to prepare the 2002 report contained a much greater proportion of test sites 

reflecting an emphasis toward sampling streams suspected of having water quality 

problems. 

 

Bioassessment results from the 305(b) report were used to prepare Iowa’s 2002 Section 

303(d) list of impaired waters.  Impaired waters may require the development of a Total 

Maximum Daily Load (TMDL) or watershed plan to restore designated beneficial water 

uses to fully supporting status. 

 

The differences in levels of aquatic life use support between the two 305(b) reporting 

periods shown in Figure 1-5 demonstrate the problem in relying on sample data generated 

from project biased, non-random sampling.  A probabilistic survey design, in which the 
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sample sites are randomly chosen, is preferable for obtaining an unbiased assessment of 

environmental conditions across a broad geographic area (Paulsen et al. 1998; Hughes et 

al. 2000).   In 2002, IDNR initiated a probabilistic, random stream survey project with 

funding and technical support provided by the U.S. EPA Environmental Monitoring and 

Assessment Program (EMAP).  The random survey design will provide Iowa with an 

objective assessment of stream conditions throughout the state and create a benchmark 

for trend monitoring.  The first two years of random sample data suggest that sampling 

results from non-random stream sites during the previous nine years may have 

overestimated biological condition levels in Iowa’s wadeable streams (Figure 1-6).   

Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI)

Poor
(0-30)

Fair
(31-55)

Good
(56-75)

Excellent 
(76-100)

1994-2002 median score 
(58) non-random sites

2002-2003 median score (48) 
random survey of perennial streams
                   95% confidence level

 
 
Figure 1-6.  Median BMBI scores from 1994-2002 non-random sample sites and the 

2002-2003 random survey of perennial streams.    
 

 

A median (50th percentile) score of 58 was obtained from 1994-2002 non-random 

sampling.  In contrast, 2002-2003 random sampling results indicate that 50% of Iowa’s 

perennial stream miles equal or exceed a BMIBI score of 48.  Furthermore, the non-

random median score is outside of the 95% confidence limits of the random sampling 

median score. 
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1.4 Recommendations 
 

The stream bioassessment framework described in this report can serve as a foundation 

for establishing biological water quality criteria in Iowa’s Water Quality Standards (IAC 

Chapter 567:61).  A continuing process of evaluation and improvement should be 

pursued to strengthen the existing framework and address deficiencies.  Some of the most 

critical needs and recommendations are listed below: 

 

1. Maintain consistent sampling methods.  Sampling methods should remain relatively 

constant in order to ensure data consistency and continuity over time.  Procedural 

changes may be justified, but should always be carefully evaluated and documented.  

For example, sampling using both methods simultaneously should be done to 

establish a statistical relationship between the old and new method. 

 

2. Refine stream classification and reference conditions.  Additional refinement and 

classification of reference conditions are needed.  Bioassessment conclusions are 

reached by comparing test site conditions against reference conditions.  Therefore, it 

is imperative that reference sites and test sites are appropriately classified.  

Ecoregions are a useful classification tool; however, it is evident that stream 

classification can be refined and strengthened by incorporating local factors, such as 

channel morphology and habitat.  In order to accurately convey what reference 

conditions represent, least disturbed reference sites in each ecoregion and stream class 

should be identified along gradients in biological condition and human disturbance.  

The multi-tiered biological condition gradient presented by the U.S. EPA (Davies 

2003; Jackson 2003) can be used as a conceptual model (see Figures 5-9 and 5-23).   

 

3. Update reference database.  A maintenance-sampling program for reference sites is 

needed to keep reference condition data current and ensure the validity of 

bioassessment results.  Reference sites should be re-sampled with no less frequency 

than once in five years.  Additional reference sites are needed to fill gaps in coverage 

and address stream classification issues.  
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A Geographic Information System (GIS) analysis and validation of reference site 

watersheds is needed.  Several improvements in GIS themes and technologies have 

become available in recent years.  For example, the updated coverage of animal 

feeding operations and manure application fields would provide for a better review of 

potential animal waste impacts.  Land use/cover, soil erosion rates, and watershed 

morphology characteristics are more easily calculated now.  Improved GIS 

capabilities make it more feasible to complete a quantitative analysis of watershed 

characteristics and human disturbance factors. 

 

4. Complete random stream survey.  The statewide, random (probabilistic) stream 

survey initiated in 2002 should be completed in 2006 to obtain an unbiased and 

statistically powerful assessment of Iowa’s stream conditions.  Similar types of 

surveys are in progress or have been completed in surrounding states.  Iowa's survey 

design is adapted from methods developed by the U.S. EPA Environmental 

Monitoring and Assessment Program (EMAP). 

 

5. Adopt biological criteria.  To solidify bioassessment within water resource 

management programs, IDNR needs to formally adopt biological criteria in Iowa's 

water quality standards.  Codification will allow for broader application of 

bioassessment within the arena of water quality mitigation and regulation programs.   

 

The process of establishing biocriteria in water quality standards is fraught with 

potential pitfalls and obviously must be carefully planned and implemented.  A 

logical place to begin is with adoption of narrative biocriteria.  Numerous examples 

from other states show how narrative criteria can establish a framework for 

bioassessment and numeric biocriteria.  Development of narrative biocriteria should 

also address how biocriteria will link to state water quality standards and Clean Water 

Act objectives. 

 

The second major step, one that has not been accomplished in many states, is 
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codification of numeric biocriteria.  The biological impairment thresholds listed in 

Part 6, which are based on the statistical distribution of stream reference site BMIBI 

and FIBI scores, are an example of the type of quantifiable biological measures that 

might fit within a numeric biocriteria framework.  The Ohio EPA's biocriteria 

framework, which is based on a tiered aquatic life and biological condition gradient 

(Yoder and Rankin 1995; Davies 2003), may serve as a useful model for Iowa. 

 



   

 

 



Biological Assessment of Iowa’s Wadeable Streams  

2-1 

2 Introduction 

 

The ultimate goal of the Federal Clean Water Act (CWA) is to restore the biological, 

chemical, and physical integrity of the nation’s waters.  To help measure progress toward 

achieving this goal, the Iowa Department of Natural Resources (IDNR) is developing a 

methodology and biological criteria (biocriteria) for Iowa’s wadeable rivers and streams.  

As part of a complete water quality standards program, the CWA requires that states 

adopt criteria to protect the designated beneficial uses of water bodies within their 

jurisdiction.  Biocriteria serve as a direct measurement endpoint for assessing the status 

of aquatic life uses. 

 

Biocriteria are numerical expressions or narrative expressions that 

describe the reference biological condition of aquatic communities 

inhabiting waters of a given designated aquatic life use (U.S. EPA 1996). 

 

Like other types of water quality criteria, biocriteria can be used to assess water quality 

status and trends, identify impaired water uses, and support water quality management 

decisions.  Because aquatic biological communities integrate and reflect the cumulative 

impacts of biological, chemical, and physical environmental disturbances, biocriteria are 

particularly well suited for uncovering water quality problems that frequently are not 

detected through application of individual chemical or physical water quality criterion.   

 

The Iowa Department of Natural Resources (IDNR) initiated stream biocriteria 

development in 1992.  IDNR’s partner in this project is the University of Iowa Hygienic 

Laboratory (UHL), which has provided sampling and analytical services throughout the 

project's life.  Funding has been provided through Region VII, U.S. Environmental 

Protection Agency as authorized by Sections 104(b), 319, and 604(b) of the CWA.  

Starting in 2000, funding support has also come from Iowa's Ambient Water Monitoring 

Program.



Biological Assessment of Iowa’s Wadeable Streams Introduction 

2-2 

2.1 Project Objectives 
 

A number of specific objectives were stated at the beginning of the stream biocriteria 

development project: 

 

• Establish standard biological sampling procedures; 

• Select stream reference sites; 

• Acquire sampling data for development of biological criteria;  

• Develop and evaluate the performance of biological metrics and indices; 

• Define reference conditions and recommend biological criteria. 

 

This report summarizes the extent to which project objectives have been achieved, and 

identifies additional work that is needed to successfully establish and implement stream 

biocriteria.  The report details a framework for stream biological assessment and 

demonstrates how the framework can be used to assess stream biological integrity and 

identify aquatic life impairments. 

 

 

2.2 Historical Perspective  
 

In developing stream biocriteria, a good way to begin is by considering Iowa’s rivers and 

streams from an historical perspective.  Understanding what Iowa's streams used to be 

like and how they have changed can help place biocriteria development in the proper 

context and lead to appropriate stream rehabilitation goals. 

 

Beginning in the mid-1800's with settlement by European-Americans, large-scale 

changes to Iowa’s landscape and aquatic resources have occurred.  The hydrology and 

water quality of Iowa’s streams were drastically altered by prairie conversion and 

drainage improvement for agricultural purposes.  Written accounts before the turn of the 

century by the ichthyologist, Seth Meek (1892; 1893) described some of the changes to 

Iowa streams caused by agricultural development.  Meek reported streams that at one 
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time were narrow and deep, and which previously flowed cool and clear, had become 

wide, shallow and muddy.  Networks of tile drains and drainage ditches were constructed 

to facilitate drainage and conversion of wetlands to arable land.  In the process, many 

new miles of stream channel were created in areas occupied by wetlands.  In Story 

County, Iowa, the amount of stream miles in the Bear Creek watershed increased 

substantially due to this type of hydrologic modification (Anderson 2000).   

 

Other modifications resulted in substantial stream losses.  During the first three decades 

of the 20th century numerous large-scale stream channelization projects were completed 

throughout Iowa.  In excess of 1000 stream miles were lost to channelization, and habitat 

was permanently damaged in the channelized segments that remained (Buckley 1975).  

Widespread hydrologic modification of Iowa’s watersheds has contributed to stream 

channel instability and excessive rates of downcutting, bank erosion, and sedimentation. 

 

Many other disturbances have influenced Iowa’s rivers and streams.  The common carp 

(Cyprinus carpio), first introduced in Iowa around 1880, spread quickly throughout the 

state’s lakes and streams and displaced many native fishes.  Before the turn of the 

century, numerous low-head dams built on Iowa’s interior rivers presented barriers to 

seasonal movements of native Iowa fishes (Menzel 1981).  As Iowa's cities and industries 

grew during the first half of the 20th century, reports of polluted rivers and fish kills from 

raw or inadequately treated sewage were common.  Installation of modern wastewater 

treatment plants, which was facilitated by the landmark Federal Pollution Control Act of 

1972, vastly improved wastewater quality and eliminated severe cases of point source 

pollution.  Beginning in the 1960s, increased inputs of fertilizers and pesticides further 

contributed to widespread nonpoint source pollution of Iowa’s waters.  Agricultural and 

urban runoff containing bacteria, nutrients, organic matter and sediment remain as the 

largest threats to water quality in Iowa. 

 

Significant losses of native fish and mussel species have resulted from the environmental 

degradation of Iowa’s waters.  Of the 139 native fishes of Iowa, twelve (12) are thought 

to be extirpated from the state (Menzel 1981).  As a general trend, northern species that 
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prefer cool, clear streams containing rooted aquatic vegetation were lost or reduced in 

range, while turbidity-tolerant, warm water species from the south expanded their ranges 

in Iowa.   

 

Substantial losses of freshwater mussels have also been reported.  Nearly one-half of the 

55 mussel species thought to occur in Iowa more than 100 years ago were not found in a 

survey completed in the mid-1980s (Frest 1987).  A recent survey documented additional 

losses.  The re-survey of Frest sites in the late 1990s found sharp declines in mussel 

species richness (Arbuckle and Downing 2000).  The reductions were correlated with 

increased agricultural land use and nutrient levels.  The exact causes of the declines are 

not understood, however, a combination of factors including habitat alterations, over 

harvesting, and water quality degradation are responsible. 

 

In light of the historic changes and biological losses that have occurred, it is probably 

safe to assume that biological conditions in Iowa’s rivers and streams today are different, 

and probably significantly lower quality than pre-settlement conditions.  Moreover, a 

return to pre-settlement stream conditions might not be possible considering the 

irreversible modification of Iowa’s stream channels, and may not be realistic if it requires 

converting most of the state back to a tallgrass prairie ecosystem.  Therefore, a valid 

question to ask is what relevance do pristine historic conditions have for biocriteria 

development? 

 

The approach to development of Iowa’s stream biocriteria described in this report utilizes 

contemporary reference sites to define wadeable stream reference conditions.  

Specifically, biological attributes measured at least-disturbed, best-available reference 

stream sites are used to evaluate other streams of similar type.  In using this approach, a 

certain amount of disturbance and departure from natural or pristine conditions is 

inherently accepted due to the legacy of historic alterations to Iowa’s landscape and 

stream ecosystems.  One concern is that contemporary reference conditions could reflect 

substantial levels of stream impairment that would lead to establishment of standards that 

are not consistent with the goals of the Clean Water Act and societal expectations. 
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Historical information or conceptualizations of biological conditions based on historical 

records are valuable because they can provide a context for establishing biological 

criteria and setting stream rehabilitation goals.  Reference conditions that reflect the best 

of what is available today are useful for setting immediate rehabilitation goals; however, 

these goals should be re-evaluated periodically.  Whenever feasible, as conditions 

improve through better land stewardship and stream management, biocriteria should be 

adjusted upward toward historical benchmarks.  Following this philosophy, incremental 

progress toward historical biological conditions and integrity should be the long-term 

goal.  Under no circumstances should biologically impaired conditions that fail to meet 

the “fishable” use interim goal of the CWA (Section 101(a)[2]) be used to establish 

biocriteria (U.S. EPA 1996). 
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3 Biological Assessment Framework 

 

A methodological framework has been established to standardize the collection and 

analysis of stream bioassessment data.  The framework is designed to ensure that data are 

comparable across sampling sites and years, and that a consistent approach is used to 

evaluate biological condition and the status of aquatic life uses.  The framework has four 

main components: 1) ecoregions, 2) stream reference sites, 3) sampling methods, and 4) 

biological indices.  The first three components are described below.  Biological indices 

are covered in Part 5. 

 

3.1 Ecoregions 
 

Ecological regions (ecoregions) are areas in which there is relative homogeneity in 

ecological systems and relationships between organisms and their environments 

(Omernik 1995).  They are formed by a complex relationships between natural and 

human environmental factors such as climate, geology, landform, land cover / use, and 

soils.  Within ecoregions there are recognizable patterns and similarities in the mosaic of 

environmental resources, ecosystem characteristics, and influence of human activities. 

 

Ecoregions are widely used as a spatial framework for research and management of 

stream ecosystems (Omernik 1995; U.S.EPA 2002), and the ecoregional approach to 

biocriteria development is endorsed by the U.S. EPA (1996).  The IDNR has incorporated 

ecoregions in each step of the biocriteria development process including: reference site 

selection, sample design, data analysis, and establishment of aquatic life impairment 

thresholds. 

Ecoregion Refinement 
 

Ecoregions can be recognized and defined at different scales to suit a variety of purposes 

(Omernik 1995).  In 1993, the U.S. EPA and IDNR completed an ecoregion refinement 

project to facilitate biocriteria development (U.S. EPA 1993).  The project's main goals 
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were to refine Iowa’s ecoregion map and identify candidate stream reference sites.  

Previous studies of Iowa’s stream fish communities (Menzel 1987; Paragamian 1990) 

demonstrated the inadequacy of Level III Ecoregions (Figure 3-1) as a regional 

framework for biocriteria development.  The Western Corn Belt Plains ecoregion (WCBP 

#47), which covers approximately 83% of Iowa’s land surface area, was the main 

concern.  Within the WCBP, substantial differences in stream fish assemblage structure 

occur among different landform / physiographic regions of the state. 

 

Iowa's portion of the Western Corn Belt Plains ecoregion was subdivided into six Level 

IV Ecoregions in 1993.  Since then, ecoregion refinement projects in adjacent states have 

also been completed.  As a result of subdividing Level III Ecoregions that adjacent states 

share with Iowa, several minor modifications of the 1993 Iowa ecoregion map have been 

made.  Most of these changes affected nomenclature, not boundary locations.  The 

current map of Iowa’s ecoregions consists of ten Level IV Ecoregions (Figure 3-2) 

(Chapman et al. 2002). 

 

The methods used to define Iowa’s ecoregion boundaries are described by Omernik et al. 

(1993) and Griffith et al. (1994).  The project generally involved compiling and 

reviewing relevant data sources, identifying regional patterns in environmental 

characteristics, drafting ecoregion boundaries, revising the ecoregion framework based 

on comments from resource managers and scientists, and producing digitized ecoregion 

coverages and a final map.  Land cover / use, potential natural vegetation, soils and 

surficial geology (landform) were the most useful landscape variables for defining Iowa’s 

ecoregion and subregions.  The map and description of landform regions by Prior (1991) 

was a particularly useful resource, and many of the ecoregion boundaries align closely 

with landform boundaries.  Most of the important differences between the two regional 

maps of Iowa have to do with differences in soil types and land cover across the broad 

landform region referred to as the Southern Iowa Drift Plain.  Some general 

characteristics of Iowa’s ecoregions are listed in Table 3-1.
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3.2 Stream Reference Sites 
 

The IDNR is using stream ecoregion reference sites to establish reference biological 

conditions for wadeable rivers and streams.  Stream locations currently considered as 

reference sites by the IDNR are listed in Table 3-2.  Reference sites play a key role in 

defining the reference condition, which is the benchmark against which biological 

conditions of similar types of streams in the same ecoregion are measured.  The concept 

of reference conditions and the process of selecting reference sites are described in 

various scientific and technical publications (Hughes 1986; Gallant et al. 1989; Yoder 

and Rankin 1995; Barbour et al. 1996; U.S. EPA 1996). 

 

The two basic requirements of stream reference sites are:  1) minimally disturbed by 

human activity; 2) representative of streams to which they are compared.  They should 

exhibit biological characteristics that are both natural and regionally attainable.  Any 

single reference site should not be expected to represent all streams in a region.  

Collectively, however, a set of reference sites should represent the range of minimally 

impaired biological conditions for streams within a particular ecoregion.  In cases where 

minimally disturbed reference sites are lacking, alternative approaches to establishing 

reference conditions, such as use of historical data, simulation models, or expert 

consensus should be considered (U.S. EPA 1996).   

 

3.3 Reference Site Selection  
 

In 1993, the U.S. EPA Corvallis Research Laboratory and the IDNR established a 

working list of 110 candidate reference sites that represent Iowa’s wadeable rivers and 

streams.  The primary goal was to choose reference sites that are regionally representative 

and that are least disturbed by human activities.  IDNR staff developed guidelines that 

specify the target number of sites for each ecoregion and the range of stream sizes to be 

considered for reference site nomination (IDNR 1992).  The population of candidate 

streams included wadeable rivers and streams currently designated for protection of 
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warm water or cold water aquatic life uses.  Intermittent headwater streams classified as 

general use waters and large, non-wadeable interior or Border Rivers were excluded. 

 

U.S. EPA researchers provided IDNR staff with photocopied 1:100:000 scale maps 

showing candidate reference site locations and delineated watershed areas.  The IDNR 

also recommended several candidate sites, which were added to the list after 

consideration by U.S. EPA researchers.  Candidate sites were reviewed using information 

gathered from field reconnaissance, GIS maps, staff interviews, and stream assessment 

files.  Field reconnaissance was particularly useful for evaluating local instream and 

riparian habitat conditions.  Several candidate sites were eliminated after local inspection 

found previously unknown habitat alterations or water quality threats.   

 

The reference site review process was generally a subjective, expert-driven analysis 

conducted by IDNR staff and U.S. EPA researchers (Omernik et al. 1993; Griffith et al. 

1994).  A quantitative, rule-based approach was not thought to be feasible because of the 

perceived difficulty in defining meaningful criteria for streams spanning ten ecoregions, 

and the amount of staff time and other resources needed to apply the criteria.  The IDNR 

considers reference site selection an evolving process that will require ongoing analysis 

to ensure the population of reference sites meets the basic requirements of quality and 

representation.  Recent advances in GIS capabilities hold promise that a quantitative 

reference stream watershed validation process can be implemented in the future. 

 

In reviewing candidate reference sites, IDNR staff considered five major factors: 1) 

animal feeding operations; 2) channel alterations; 3) land cover / land use; 4) riparian and 

instream habitat characteristics; 5) wastewater discharges.  Described below are 

guidelines used to evaluate each factor. 

 

Animal Feeding Operations  

 

Locations of permitted animal feeding operations were identified from a statewide 

Geographic Information System (GIS) coverage.  Sites were chosen so as to completely 
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avoid if possible or minimize the risk of stream pollution from animal feeding operations.  

In many cases, reference sites could be found in small watersheds that did not have any 

large animal feeding operations.  As watershed size increased, however, it was very 

difficult to find reference sites that did not contain at least one animal feeding operation 

in the watershed.  In these cases, the objective was to minimize the risk of pollution 

impacts from animal feeding operations by considering three factors: a) number and sizes 

of facilities; b) hydrological proximity and waste management method; c) records of 

spills and/or fish kills caused by improper waste handling.  Candidate reference sites 

considered vulnerable to livestock waste impacts as a result of one or more of these 

factors were eliminated. 

 

Channel Alterations 

 

Bridges, channelization, and dams are the major types of channel alterations found in 

Iowa.  Channel alterations occur along every perennial stream in the state; however, the 

amount varies substantially among different regions.  For example, stream channelization 

is much more extensive in western and southwestern Iowa compared to northeastern 

Iowa.  Therefore, channel alterations first were characterized regionally, and then 

evaluated at the local level.  The ultimate goal was to choose candidate reference sites 

that were least impacted by channel alterations typical of each ecoregion.   

 

Often, stream habitat is altered for a short distance upstream and downstream from a 

bridge crossing.  The altered habitat might be wider, deeper or unrepresentative in other 

ways.  For this reason, candidate reference sites are located upstream or downstream 

from the stream reach adjacent to the bridge structure.  

 

Stream channelization is an important issue with respect to stream reference site selection 

in Iowa.  Previous studies in Iowa have documented the adverse impacts of 

channelization on habitat and fish assemblages (Bulkley 1975; Paragamian 1990).  In 

order to have reference sites located in all of the major ecoregions of Iowa, it was 

necessary to accept some level of channelization in reference stream watersheds.  To 
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minimize the effects of channelization, an effort was made to locate candidate reference 

sites in stream segments that exhibited a meandering pattern for several miles upstream 

and downstream from the site.  In evaluating channel condition, an effort was made to 

choose reference sites that did not display evidence of active channel downcutting or 

excessive levels of bank erosion and sedimentation. 

 

In the headwater areas of Iowa's landscape, thousands of small dams have been built to 

create farm ponds for erosion control, livestock watering, and recreation.  Low head dams 

built for flood control and hydropower generation are located in numerous segments of 

Iowa's major interior rivers.   A number of reference sites are located in tributary streams 

of rivers that have one or more low head dams on them.  Locating candidate reference 

sites away from the influence of dams, however, was not a major problem.  Streams that 

flow directly into impoundments created by low head dams were eliminated from 

consideration as reference sites out of concern that resident fish assemblages would be 

artificially influenced by species living in the impoundment. 

 

Land Cover / Use 

 

The level of disturbance from land use was considered first at a regional scale and 

secondly at a local scale.  Only very generalized land use coverage was available for the 

entire state at the time the reference site screening process began in 1992.  From this 

coverage, only coarse patterns in land use could be evaluated at the watershed scale (e.g., 

distribution of land covered by perennial woody vegetation).  Review of satellite imagery 

combined with field reconnaissance visits were used to make a more detailed local 

assessment of land cover / use.  The general philosophy was to choose reference sites that 

had as much natural, perennial vegetation along the stream riparian corridor as possible, 

and had the least amount of disturbance from agricultural practices.  Urban areas cover 

only about 1% of Iowa’s surface area, so it was not difficult to avoid urban land use 

impacts.  Livestock grazing in stream riparian areas is commonplace in Iowa.  A 

concerted effort was made to avoid locating reference sites in areas that are actively used 

for livestock grazing.   
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Riparian and instream habitat 

 

Physical habitat characteristics of candidate reference sites were evaluated using field 

reconnaissance and previously gathered stream assessment data.  Candidate reference 

sites judged as having poor riparian and/or instream habitat qualities were eliminated. 

The types of characteristics evaluated included: channel morphology, grazing impacts, 

vegetation type, stream dimensions and flow, substrate composition. 

 

Preference was given to stream sites having a wide buffer strip of natural vegetation on 

each side of the stream.  Three general types of buffer strip plant communities were 

observed:  a) predominantly perennial grasses and other herbaceous plants; b) mixed 

herbaceous vegetation and woody shrub/tree species; c) predominantly trees and/or 

shrubs.  The type of vegetation that occurs along Iowa’s streams will vary depending on 

the region and the position of the stream on the landscape.  For example, native 

vegetation in headwater streams in the Des Moines Lobe ecoregion (47b) consisted of 

tallgrass prairie, whereas, larger streams flowing through more deeply incised valleys of 

the region were often bordered by deciduous forest vegetation.  In recognition of these 

types of natural vegetation gradients, an effort was made to choose candidate reference 

sites having riparian vegetation that was appropriate for the region and landscape setting. 

 

Stream physical habitat variables, such as width, depth, substrate composition, and 

instream cover are important factors that influence the composition of aquatic species.  

Stream habitat conditions vary locally and regionally.  In choosing reference sites, the 

goal was to identify sites that represent a range of least-disturbed habitat conditions found 

in a region.  Sites exhibiting a moderate or greater amount of physical habitat complexity, 

in terms of variability of depth, substrate, and water current velocity, were given 

preference over stream sites with more monotonous features.  In many ecoregions, the 

difference between streams that have abundant amounts of rock substrate and regular 

pool-riffle sequences and streams that lack this type of habitat is an important distinction.  
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In ecoregions where both types of habitat frequently occur, an effort was made to balance 

the number of candidate reference sites representing each type. 

 

Wastewater Discharges.   

 

Wastewater discharges located in the watersheds of candidate reference sites were 

identified using a statewide GIS coverage of facilities permitted under the National 

Pollutant Discharge Elimination System (NPDES).  To evaluate the risk of wastewater 

impacts, the following types of information were considered:  a) number and sizes of 

facilities; b) distance from effluent outfall; c) effluent flow to stream flow ratio; d) stream 

monitoring or assessment information; e) facility compliance records. 

 

Obviously, the ideal situation would be not to have any wastewater discharges located in 

reference site watersheds.  In fact, it was often possible to find reference sites in small 

watersheds that had no point sources.  However, Iowa has more than one thousand 

permitted wastewater facilities, and as watershed size increases, it becomes nearly 

impossible to find watersheds that do not have at least one point source upstream from a 

reference site.  Therefore, in order to obtain an adequate number of reference sites for 

biocriteria development, it was necessary to accept some level of wastewater inputs.  In 

these cases, references sites were located in areas where the risk of pollution from 

wastewater discharges was minimized by permit compliance and dilution.  Candidate 

reference sites considered likely to be adversely impacted by wastewater discharges were 

eliminated. 

 

 



Bi
ol

og
ic

al
 A

ss
es

sm
en

t o
f I

ow
a’

s W
ad

ea
bl

e 
St

re
am

s 
 

Bi
oa

ss
es

sm
en

t F
ra

m
ew

or
k 

3-
13

 

 
 Fi

gu
re

 3
-3

.  
W

ad
ea

bl
e 

re
fe

re
nc

e 
st

re
am

 si
te

s:
  1

99
4–

20
00

.



Bi
ol

og
ic

al
 A

ss
es

sm
en

t o
f I

ow
a’

s W
ad

ea
bl

e 
St

re
am

s 
 

Bi
oa

ss
es

sm
en

t F
ra

m
ew

or
k 

3-
14

 

  



Biological Assessment of Iowa’s Wadeable Streams Bioassessment Framework 

3-15 

Table 3-2.  Wadeable reference stream sites: 1994–2000. 

# Stream Location Legal Description 
Eco- 

region 
Drn. Area 

(mi2) 
1 Chequest Cr. Approx. 1.5 mi. W. & 1 mi. N. of 

Pittsburg 
SW1/4, S.21,T69N, R10W, Van Buren 40a 120 

2 Lick Cr. Shimek S.F., Lick Creek Unit;  S.E. of 
Farmington 

NE1/4, S.17,T67N, R07W, Lee 40a 17 

3 Long Cr. Decatur State Wildlife Area;  S.W. of 
Van Wert 

NW1/4, S.28,T70N, R26W, Decatur 40a 99 

4 Lotts Cr. Ringold SWMA; 11 mi. W. of Lamoni SW1/4, S.24,T67N, R29W, Ringgold 40a 63 
5 Shoal Cr. S.W. of Exline NE1/4, S.19,T67N, R17W, Appanoose 40a 63 
6 Soap Cr. S.W. of Eldon NW1/4, S.5,T70N, R12W, Davis 40a 195 
7 Wolf Cr. Near Chariton; S. of Co. Rd. H50 NW1/4, S.22,T71N, R21W, Lucas 40a 65 
8 Floyd R. Sheldon Well Field; approx. 1.5 mi. 

N.E. of Sheldon 
NW1/4, S.29,T97N, R42W, O'brien 47a 64 

9 Little Rock Cr. Little Rock Co. Wildlife Area; approx. 
1.5 mi. E. of George 

NW1/4, S.5,T98N, R43W, Lyon 47a 181 

10 Little Waterman Cr. Waterman Creek SWMA; approx. 7 
mi. S. of Hartley 

NW1/4, S.4,T95N, R39W, O'brien 47a 16 

11 Mill Cr. Approx. 3.5 mi. W. & 1/2 mi. S. of 
Larrabee 

NW1/4, S.30,T93N, R40W, Cherokee 47a 260 

12 Waterman Cr. Whitrock Indian Village; approx. 1/2 
mi. N. & 3 mi. E. of Sutherland 

NW1/4, S.11,T94N, R39W, O'brien 47a 135 

13 Willow Cr. Approx. 5 mi. W. & 1/2 mi. N. from 
Quimby 

NW1/4, S.6,T90N, R41W, Cherokee 47a 32 

14 Big Muddy Cr. Approx. 3 mi. E. & 3 mi. N.  of 
Spencer 

SW1/4, S.26,T97N, R36W, Clay 47b 59 

15 Black Cat Cr. Co. Rd. P30; approx. 2 mi. W. & 5 mi. 
N. of Algona 

SE1/4, S.5,T96N, R29W, Kossuth 47b 70 

16 Boone R. Bells Mill Park; approx. 3.5 mi. N. & 
1/2 mi. E. of Stratford 

NW1/4, S.29,T87N, R26W, Hamilton 47b 900 

17 Buttrick Cr. Waters Co. Wildlife Area; West of 
Grand Junction 

SW1/4, S.1,T83N, R30W, Greene 47b 200 

18 East Branch Iowa R. 105th St, Near Belmond SW1/4, S.6,T93N, R23W, Wright 47b 189 
19 Little Beaver Cr. Approx. 3 mi. S.W. of Woodward SW1/4, S.11,T81N, R27W, Dallas 47b 34 
20 Little Sioux R. Approx. 1 mi. W. of Diamond Lake; 

N.E. of Lake Park 
NW1/4, S.15,T100N, R37W, Dickinson 47b 103 

21 Little Sioux R. Horshoe Bend Co. Park; S.W. of 
Milford 

SW1/4, S.15,T98N, R37W, Dickinson 47b 330 

22 Lizard Cr. Approx. 3.5 mi. S. of Clare NE1/4, S.11,T89N, R30W, Webster 47b 240 
23 Maynes Cr. Mallory Co. Park; approx. 5 mi. S. of 

Hampton 
SW1/4, S.29,T91N, R20W, Franklin 47b 36 

24 Mosquito Cr. Upstr. of Highway 44 Bridge; 5 mi. E. 
of Panora 

SW1/4, S.32,T80N, R29W, Dallas 47b 74 

25 North Raccoon R. Raccoon River Greenbelt; approx. 2.75 
mi. N. of Sac City 

NW1/4, S.2,T88N, R36W, Sac 47b 328 

26 Plum Cr. Approx. 3.5 mi. E. & 3.5 mi. N. of 
Algona 

SW1/4, S.15,T96N, R28W, Kossuth 47b 50 

27 Prairie Cr. Dolliver State Park; approx. 2 mi. W. 
& 2 mi. N. of Lehigh 

SW1/4, S.35,T88N, R28W, Webster 47b 30 

28 South Fork Iowa R. Logsdon Co. Park; approx. 8.5 mi. S. 
of Iowa Falls 

SW1/4, S.35,T88N, R21W, Hardin 47b 120 

29 South Skunk R. Approx. 3 mi. N. & 2 mi. E. of Ames SE1/4, S.6,T84N, R23W, Story 47b 258 
30 West Buttrick Cr. Adjacent to Spring Lake Park  SE1/4, S.24,T84N, R30W, Greene 47b 105 
31 White Fox Cr. Approx. 5.5 mi. N/N.E. of Webster 

City 
SW1/4, S.10,T89N, R25W, Hamilton 47b 79 

32 Willow Cr. Willow Creek Wildlife Area (Greene 
Co); approx. 2 mi. E/Se of Hanlontown

SW1/4, S.29,T98N, R21W, Worth 47b 24 

33 Winnebago R. Lande Access; approx. 3 mi. W. & 1.5 
mi. N. of Lake Mills 

SE1/4, S.31,T100N, R23W, Winnebago 47b 122 

34 Bailey Cr. Ingrebretsen Co. Park; approx. 4 mi. 
W. & 1.5 mi. N. of Sheffield 

NE1/4, S.1,T93N, R21W, Franklin 47c 75 
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# Stream Location Legal Description 
Eco- 

region 
Drn. Area 

(mi2) 
35 Bear Cr. Approx. 2 mi. W. & 1 mi. N. of 

Shellsburg 
SW1/4, S.4,T84N, R09W, Benton 47c 52 

36 Bear Cr. Buchanan Co. Park; approx. 2 mi. E. & 
1/2 mi. S. of Brandon 

SW1/4, S.36,T87N, R10W, Buchanan 47c 46 

37 Black Hawk Cr. Popp Co. Access; approx. 2.5 mi. S.W. 
of Hudson 

NW1/4, S.33,T88N, R14W, Black 
Hawk 

47c 303 

38 Buffalo Cr. Approx. 4 mi. E. of Central City NE1/4, S.5,T85N, R05W, Linn 47c 187 
39 Burr Oak Cr. Approx. 2 mi. N. & 4 mi. E. of Osage NE1/4, S.9,T98N, R16W, Mitchell 47c 21 
40 Coldwater Cr. Approx. 3 mi. S. & 1 mi. E. of Greene SE1/4, S.19,T93N, R16W, Butler 47c 63 
41 Crane Cr. Approx. 1 mi. W. of Lourdes SW1/4, S.31,T98N, R12W, Howard 47c 71 
42 Deer Cr. Approx. 1 mi. N/N.W. from Carpenter NW1/4, S.6,T99N, R18W, Mitchell 47c 86 
43 E Frk Wapsipinicon 

R. 
Approx. 5 mi. N. & 3 mi. W. of New 
Hampton 

SW1/4, S.10,T96N, R13W, Chickasaw 47c 11 

44 E. Br. Wapsipinicon 
R. 

S.W.eet Marsh SWMA; Highway 93; 
approx. 2 mi. N. & 1 mi. E. of Tripoli 

NW1/4, S.26,T93N, R12W, Bremer 47c 145 

45 Lime Cr. Lime Creek Park; approx. 1.5 mi. N.E. 
of Brandon 

SW1/4, S.23,T87N, R10W, Buchanan 47c 30 

46 Little Cedar R. Colwell Co. Park; approx. 2.5 mi. W. 
of Colwell 

NE1/4, S.8,T96N, R15W, Floyd 47c 275 

47 Little Turkey R. Gouldsburg Co. Park; approx. 500' 
dwnstr. of Confluence With Crane 
Creek 

SW1/4, S.30,T95N, R09W, Fayette 47c 318 

48 Pine Cr. Approx. 3.5 mi. N. & 2 mi. W. of 
Quasqueton 

NW1/4, S.8,T88N, R08W, Buchanan 47c 30 

49 Plum Cr. Approx. 2.5 mi. N. of Hopkinton SW1/4, S.31,T88N, R03W, Delaware 47c 81 
50 Rock Cr. Approx. 1/4 mi. E. of Rock Creek 

(Town) 
NE1/4, S.12,T97N, R18W, Mitchell 47c 46 

51 South Beaver Cr. Approx. 1 mi. S. & 1.25 mi. W. of 
Parkersburg 

NE1/4, S.2,T89N, R17W, Grundy 47c 114 

52 Volga R. Approx. 3 mi. N. of Maynard; upstr. of 
Twin Bridges Co. Park 

SE1/4, S.34,T93N, R09W, Fayette 47c 50 

53 Wapsipinicon R. Twin Ponds Chickasaw Co. Park; 
approx. 5 mi. S.E. of Ionia 

SW1/4, S.28,T95N, R13W, Chickasaw 47c 155 

54 Wapsipinicon R. Wapsipinicon SWMA; approx. 2 mi. 
N. & 2 mi. W. of Mcintyre 

SW1/4, S.21,T100N, R15W, Mitchell 47c 30 

55 West Fork Cedar R. Lake Considine Co. Park NE1/4, S.12,T91N, R18W, Butler 47c 554 
56 Big Cr. Approx. 4 mi. N. & 1/2 mi. W. of 

Denison 
SE1/4, S.15,T84N, R39W, Crawford 47e 18 

57 East Branch West 
Nishnabotna R. 

Approx. 4.5 mi. N.E. of Avoca SW1/4, S.26,T78N, R39W, Shelby 47e 200 

58 Indian Cr. Upstr. Highway 6 Bridge; N. W. of 
Lewis 

SW1/4, S.5,T75N, R37W, Cass 47e 180 

59 Jordan Cr. Approx. 1.5 mi. upstr. from 
Confluence With Farm Creek 

NE1/4, S.30,T74N, R39W, 
Pottawattamie 

47e 31 

60 Otter Cr. Approx. 3/4 mi. N.W. of Deloit SE1/4, S.1,T84N, R39W, Crawford 47e 44 
61 Pilot Branch Approx. 1/2 mi. N.E. of Stennett SW1/4, S.26,T73N, R38W, 

Montgomery 
47e 6 

62 West Nishnabotna R. Approx. 1 mi. N.E. of Irwin; Upper 
Nishnabotna Habitat Area 

NW1/4, S.29,T81N, R37W, Shelby 47e 85 

63 Barber Cr. Barber Creek SWMA;  S.E. of Grand 
Mound 

SE1/4, S.33,T81N, R03E, Clinton 47f 14 

64 Bear Cr. Eden Valley Co. Park; approx. 2 mi. S. 
& 1/2 mi. W. of Baldwin 

NW1/4, S.33,T84N, R01E, Jackson 47f 71 

65 Big Slough Cr. Spring Run Speedway; approx. 4 mi. 
S. of Columbus City 

SW1/4, S.14,T74N, R05W, Louisa 47f 29 

66 Buck Cr. Approx. 8 mi. W. of Barnes City; 
Poweshiek/Mahaska Co. Line 

SW1/4, S.32,T78N, R15W, Mahaska 47f 34 

67 Deer Cr. Approx. 2 mi. N. of Stuart NW1/4, S.21,T78N, R30W, Guthrie 47f 11 
68 East Nodaway R. Hawleyville; approx. 3 mi. N. & 2 mi. 

W. of New Market 
SW1/4, S.13,T69N, R36W, Page 47f 299 
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# Stream Location Legal Description 
Eco- 

region 
Drn. Area 

(mi2) 
69 Honey Cr. Approx. 3 mi. E. of Bedford SE1/4, S.21,T68N, R33W, Taylor 47f 29 
70 Howerdon Cr. Approx. 4 mi. W. And 2 mi. N. of 

Winterset 
SE1/4, S.19,T76N, R28W, Madison 47f 12 

71 Long Cr. Approx. 3 mi. S. of Columbus Junction SE1/4, S.13,T74N, R05W, Louisa 47f 132 
72 Lost Cr. Approx. 2.5 mi. N. & 3.5 mi. W. of 

Princeton 
NW1/4, S.29,T80N, R05E, Scott 47f 33 

73 Lytle Cr. Approx. 1.5 mi. N. & 4 mi. W. of 
Zwingle 

NE1/4, S.30,T87N, R02E, Dubuque 47f 57 

74 Middle R. Pammel State Park; approx. 2 mi. S. & 
2.5 mi. W. of Winterset 

NE1/4, S.16,T75N, R28W, Madison 47f 228 

75 Mud Cr. Approx. 4.5 mi. W. & 1.5 mi. N. of 
Baxter 

SW1/4, S.1,T81N, R21W, Jasper 47f 10 

76 North Branch North 
R. 

Next to Goeldner Wood Co. Park; S.E. 
of Earlham 
 

NE1/4, S.21,T77N, R28W, Madison 47f 39 

77 North Skunk R. Approx. 3.5 mi. N. & 1/2 mi. E. of 
Rose Hill 

NE1/4, S.22,T76N, R14W, Mahaska 47f 529 

78 Richland Cr. Approx. 1/2 mi. N. of Haven NE1/4, S.21,T82N, R14W, Tama 47f 56 
79 Rock Cr. Approx. 2 mi. S. And 1 mi. W. of 

Tipton 
SW1/4, S.13,T80N, R03W, Cedar 47f 55 

80 Silver Cr. Approx. 1.25 mi. N. & 1.5 mi. W. of 
Dewitt 

SW1/4, S.2,T81N, R03E, Clinton 47f 41 

81 South Raccoon R. Nation's Bridge Co. Park; N. of Stuart SW1/4, S.5,T78N, R30W, Guthrie 47f 332 
82 Brush Cr. W51 Bridge S. of Wadena SW1/4, S.4,T92N, R07W, Fayette 52b 33 
83 Canoe Cr. Canoe Creek SWMA; N.E. of Decorah NE1/4, S.25,T99N, R07W, Winneshiek 52b 67 
84 Catfish Cr. Swiss Valley Dubuque Co. Park SE1/4, S.19,T88N, R02E, Dubuque 52b 11 
85 Coldwater Cr. Coldwater Spring SWMA N. W. of 

Bluffton 
NE1/4, S.31,T100N, R09W, 
Winneshiek 

52b 18 

86 Deep Cr. Near Wadena NE1/4, S.10,T92N, R07W, Fayette 52b 3 
87 Dibble Cr. Approx. 1.5 mi. N.W. of Clermont SE1/4, S.21,T95N, R07W, Fayette 52b 12 
88 French Cr. French Creek SWMA; approx. 7 mi. 

N. & 4 mi. E. of Waukon 
SE1/4, S.23,T99N, R05W, Allamakee 52b 10 

89 Little Maquoketa R. Downstr. Twin Springs Rd. Crossing; 
6 mi. W. of Dubuque 

SW1/4, S.15,T89N, R01E, Dubuque 52b 47 

90 Middle Bear Cr. Approx. 2.5 mi. N. & 1.5 mi. E. of 
Highlandville 

SW1/4, S.14,T100N, R07W, 
Winneshiek 

52b 5 

91 North Bear Cr. N. Bear Creek Public Access Near 
Highlandville 

NE1/4, S.25,T100N, R07W, 
Winneshiek 

52b 28 

92 North Cedar Cr. SWMA upstr. of Co. Rd X60 Bridge NW1/4, S.17,T94N, R03W, Clayton 52b 6 
93 Paint Cr. Yellow River S.F.  dwnstr. of Little 

Paint Creek confluence 
SE1/4, S.32,T97N, R03W, Allamakee 52b 74 

94 Trout R. Trout River Public Area; approx. 7 mi. 
S. & E. of Decorah 

SE1/4, S.33,T98N, R07W, Winneshiek 52b 7 

95 Yellow R. Yellow River Unit/Yrsf; approx. 1.5 
mi. E. of Ion 

SE1/4, S.19,T96N, R03W, Allamakee 52b 225 

96 Honey Cr. Approx. 3 mi. S. & 1/4 mi. W. of 
Conesville 

NE1/4, S.1,T75N, R05W, Louisa 72d 20 

97 Pike Run Approx. 5 mi. E. & 1/2 mi. N. of 
Nichols 

NE1/4, S.8,T77N, R03W, Muscatine 72d 9 
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3.4 Data Collection  
 

Sampling Design 

 

Once candidate reference sites were identified, a sampling plan (IDNR 1993) was 

prepared.  The plan called for sampling 110 reference sites and 40 test (impacted) sites 

over a five-year period from 1993-1997.  Because of statewide record levels of rain and 

flooding in 1993, the project's start was postponed until 1994.  Between 1994 and 1998 

101 candidate reference sites, 15 test sites, and 46 watershed assessment sites were 

sampled.  Most sites were sampled just once during the initial five-year period.  With 

limited project resources, the decision was made to sample as many streams as possible 

in order to better define the range of biological conditions within each ecoregion.  Three 

reference sites were sampled repeatedly during a four-year period to examine temporal, 

within-site variability.  Each year, sampling sites have been widely distributed across five 

or more ecoregions (Figure 3-4). 

 

Sampling priorities have shifted since the initial 1994-1998 sampling period, which 

emphasized candidate reference sites (Figure 3-5).  Sampling from 1999 through 2001 

emphasized follow-up sampling in streams reported as having physical habitat or water 

quality problems.  In 2000, the IDNR established a 5-year rotational schedule for re-

sampling reference sites originally sampled from 1994-1998.  Since 2001, stream 

bioassessment has been incorporated in several TMDL monitoring projects.  The latest 

project to utilize bioassessment sampling is the probabilistic (random) stream survey 

initiated in 2002.  This unique project is designed to provide an unbiased, statistically 

powerful assessment of Iowa's perennial rivers and streams (IDNR 2001a). 
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Figure 3-4.  Distribution of stream bioassessment sample sites by ecoregion:  1994-2002. 
 

Figure 3-5.  Types of stream bioassessment sample sites:  1994-2002. 
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Sampling Procedures 

 

In 1994, wadeable stream sampling procedures were established for biological sampling 

and physical habitat evaluation.  Standard procedures ensure that sample data are 

consistent across sampling sites and years.  The procedures were updated in 2001 to 

provide additional clarification (IDNR 2001b; 2001c).  The biological sampling 

procedures describe methods for collecting and processing stream benthic 

macroinvertebrates and fish.  The habitat evaluation procedures describe the collection 

and compilation of quantitative and qualitative habitat data.  Biological sampling and 

habitat evaluation are conducted in a pre-defined stream reach ranging in length from 

150-350 meters, depending on stream size and habitat repetition frequency.  Following is 

a synopsis of the stream bioassessment sampling procedures:  

 

Benthic Macroinvertebrate Assemblage  

 

Two types of stream benthic macroinvertebrate samples are collected: 1) standard-habitat 

and 2) multi-habitat. 

  

Triplicate standard-habitat samples are collected from either rock or wood substrates in 

riffle/run habitat.  A modified-Hess sampler or Surber sampler is used in naturally 

occurring riffle/run habitats that are comprised of large gravel and cobble substrates.  An 

array of four Hester-Dendy style artificial substrates is used in streams that lack riffles 

with coarse rock substrates. Each artificial substrate consists of 8, 4"x4"wood plates 

mounted on a steel rod, which is pushed into the stream bottom.  The artificial substrates 

are allowed a 4-6 week colonization period before they are retrieved and processed.  

Three replicate standard-habitat samples are collected from each site.  In the laboratory, a 

100-organism subsample is randomly obtained from each replicate sample.  

 

A multi-habitat sample is collected from a pre-defined stream reach from 150-350 meters 

in length, which usually encompasses at least two pool/riffle sequences or two major 
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channel bends.  Benthic macroinvertebrates are handpicked from all types of benthic 

habitat that are accessible.  Common types of benthic substrates sampled include:  silt, 

sand, muck, rock, detritus, wood, root wad, and vegetation.  Organisms are collected both 

from depositional and erosional zones of the stream. 

 

The objective of multi-habitat sampling is to maximize the number of taxa collected.  

Several (3-10) individuals of each visually distinct taxon are collected to facilitate 

identification and differentiation of similar taxa.  A combined sampling time of 90 

minutes is divided among two or three collectors who cover the entire sampling reach.  

All of the organisms are combined in one sample for the stream reach. 

 

Macroinvertebrate sample contents are preserved in 10% Formalin and transported to the 

University of Iowa Hygienic Laboratory (UHL) for analysis.  Organisms are identified to 

the lowest-practical taxonomic level.  In most cases, the analysis endpoint is genus or 

species.  Some problematic organisms (e.g., Chironomidae) are identified to family level.  

Factors that determine the taxonomic endpoint include:  1) life stage and maturity of the 

organism; 2) availability of dichotomous taxonomic keys; 3) time/cost required to make 

an accurate determination.  An outside expert confirms taxonomic determinations of a 

subset of organisms.  

Fish Assemblage 

 

Fish are sampled by direct current (DC) electrofishing.  One battery-powered, backpack 

shocker is used in small streams of average width less than 15 feet.  In wide and shallow 

streams, two or three backpack shockers are operated side-by-side.  A tow-barge 

electrofishing unit consisting of fiberglass boat with live well, generator, DC control box, 

and two reel-mounted electrodes is used in deeper, wadeable streams that require more 

power for efficient sampling. 

 

The sampling area (i.e., stream reach) is selected based on the average width of the 

stream and repetition of major stream features, such as riffles or channel bends.  The 
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minimum length of stream sampled is 150 meters and the maximum length is 350 meters. 

Block nets are set across the stream at the downstream and upstream sampling boundaries 

when needed to prevent large, mobile fish (e.g. Catostomidae species) from leaving the 

sampling area.  Block net dimensions are 0.75-inch mesh-diameter x 4 ft. height x 30 ft. 

or 60 ft. length.  Block nets are not needed in streams having shallow riffles that serve as 

obstacles to fish movement. 

 

Fish are collected in a single pass through the sampling reach.  The direction of sampling 

is from downstream to upstream.  An effort is made to sample all accessible habitats in 

the sampling area and collect all stunned fish.  Fish are captured using 3/16 inch mesh-

diameter landing nets and transferred to plastic buckets or a live well for processing on-

site.  Fish are identified, counted, and examined for external physical abnormalities 

before being released to the stream.  Fish that can't be identified to species in the field are 

preserved in 10% Formalin and brought back to the laboratory.  Fish voucher specimens 

are routinely collected.  An outside expert in fish taxonomy is periodically used to verify 

fish identifications.  IDNR and UHL staff maintain a reference collection of Iowa stream 

fishes. 

 

Physical Habitat Evaluation  

 

Habitat data are systematically gathered from ten channel cross-section transects that are 

evenly spaced in the designated sampling area.  Measurements or visual observations of 

several instream and riparian habitat variables are obtained at each transect.  Examples 

include: riparian buffer width and vegetation type, stream shading, stream bank 

condition, stream width and depth, substrate type, amount and type of instream cover. 

 

A map of the sample reach and major stream channel features is sketched during the 

transect data gathering process.  A tally of different types of macro habitat that occur 

(e.g., pools, riffles, runs) and the thalweg line of stream maximum depth is recorded.  The 

physical habitat data are compiled and a number of summary statistics are generated.  
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The data are also used to complete a habitat quality assessment form (Barbour and 

Stribling 1991).  Benchmark photographs are taken at the downstream and upstream 

sample reach boundaries. 

 

Water Quality Parameters  

 

Depending on sampling objectives, a series of water quality parameters are sampled at 

each stream bioassessment site.  Typically, in-situ measurements of dissolved oxygen, 

pH, and temperature are obtained.  A grab sample is usually collected for analysis of 

conventional water quality parameters including: total ammonia, nitrate+nitrite-nitrogen, 

Kjeldahl nitrogen, total phosphorus, specific conductance, total dissolved solids, total 

suspended solids, and turbidity.  Other water quality parameters including toxics (e.g., 

metals, pesticides) may be included to address site-specific needs.  Water sample data are 

used to characterize water quality conditions at the time of biological sampling.  Because 

the sample data are very limited, the data are mostly intended for identifying potential 

water quality concerns and relationships to biological assemblage data, and less as a 

means of evaluating water quality at any particular site.    

 

Watershed Characteristics 

 

A series of stream watershed variables are calculated by IDNR GIS staff.  Watershed 

characteristics are calculated using the ArcView Spatial Analyst software (ESRI) and 

data sources maintained in the IDNR GIS Library.  GIS analysis is essential for 

identifying patterns in watershed characteristics that help explain stream biological and 

physical habitat conditions.  In conjunction with stream biological sampling results, GIS 

analysis results are used in the diagnosis of causes and sources of stream use impairment.  

The types of GIS information gathered and analyses conducted are listed in Tables 3-3 

and 3-4.  Calculations for most of the reference sites and some impacted (test) sites have 

been completed.  These data have not been fully compiled or analyzed; therefore, results 

are not included in this report. 
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Table 3-3.  Watershed characteristics calculated for stream bioassessment sites. 
 
WATERSHED CHARACTERISTIC DEFINITION 
Total Drainage Area (TDA) (sq mi) Area inside the drainage divide contributing to surface runoff at 

the watershed outlet. 
Basin Length (BL) (mi) Measured along a line areally centered through the drainage 

divide from watershed outlet to where main channel meets the 
drainage divide. 

Basin Perimeter (BP) (mi) Measurement of length around watershed drainage divide. 
Average Basin Slope (BS) (%) Average percent slope measured by “contour band” method 
Basin Relief (BR) (ft) The difference between elevation of highest grid cell within the 

drainage divide and elevation of grid cell at watershed outlet. 
Effective Basin Width (BW) (mi) Measured in miles is equal to the total drainage area (TDA) 

divided by the basin length (BL). 
Shape Factor (SF) Dimensionless ratio of basin length (BL) to effective basin 

width (BW) 
Elongation Ratio (ER) Dimensionless ratio equal to the diameter of a circle of equal 

area to watershed divided by basin length (BL). 
Rotundity of Basin (RB) Dimensionless ratio of basin length (BL) to total drainage area 

(TDA). 
Compactness Ratio (CR) Dimensionless ratio of perimeter of watershed drainage divide 

to the circumference of a circle of equal area. 
Relative Relief (RR) (ft/mi) Measured in feet per mile is equal to the basin relief (BR) 

divided by basin perimeter (BP). 
Main Channel Length (MCL) (mi) The length of the main channel from the watershed outlet to the 

point where the main channel would meet the drainage divide if 
the channel were extended. 

Total Stream Length (TSL) (mi) Sum of lengths of all channel segments in the watershed. 
Main Channel Slope (MCS) (ft/mi) Measured in feet per mile using elevation difference and 

distance between points at 10% and 85% of the main channel 
distance 

Main Channel Sinuosity Ratio (MCSR) Dimensionless ratio of main channel length (MCL) divided by 
basin length (BL). 

Stream Density (SD) (mi/sq mi) Measurement of miles of stream per square mile of watershed 
area. 

Main Channel Slope Proportion (MCSP) Dimensionless MCSP = MCL / (MCLS)0.5 
Ruggedness Number (RN) (ft/mi) RN = (TSL)(BR)/(TDA) 
Slope Ratio (SR) Dimensionless ratio of main channel slope (MCL) to average 

basin slope (BS). 
Number of First Order Streams (FOS) Total number of Strahler first order streams (FOS) in watershed
Basin Stream Order (BSO) Strahler order of main stream channel at the watershed outlet. 
Drainage Frequency (DF) (#/sq mi) The number of first order streams per square mile of watershed 

area. 
Relative Stream Density (RSD) Dimensionless RSD=DF/(SD)2 
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Table 3-4.  Land cover / use and soil loss variables included in GIS watershed analysis. 
 

Land Cover / Use  Description 
Artificial % Watershed area as artificial surfaces (e.g., roads, parking lots, 

buildings). 
Barren % Watershed area as barren ground (e.g., quarries, construction sites) 
Grass % Watershed area as grass cover (e.g., golf courses, lawns, meadow, 

pasture, prairie, other herbaceous cover) 
Row Crop % Watershed area as row crop (e.g., corn, soybeans) 
Water % Watershed area as water (i.e., lakes, ponds, rivers, streams, 

inundated wetlands) 
Forest % Watershed area as forest (e.g., tree plantations, farm woodlots, state 

forest, other areas of dense woody vegetation cover) 
Soil Loss and Delivery  Description 
Potential Soil Loss (T/A/Y) Potential sheet and rill erosion rate calculated by Revised Universal 

Soil Loss Equation (RUSLE) in tons/acre/year 
Potential Sediment Delivery 
(T/A/Y) 

Potential rate of sediment delivery to stream network (tons/acre/year) 
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4 Sample Results and Data Analysis  

 

4.1 Stream Environmental Characteristics 
 

Stream physical habitat and water quality are important determinants of aquatic community 

structure and biological condition.  To set appropriate standards or restoration goals for streams, 

it is first important to characterize the environmental conditions encompassed by healthy, 

minimally disturbed streams.  To be able to distinguish the effects of human impacts from 

natural variation, it is equally important to understand the relationships between environmental 

conditions and stream biological communities.  

 

This part of the report is devoted to stream sampling data and analysis.  Section 4.1 displays the 

statistical ranges of physical habitat and water quality parameters sampled from 98 candidate 

reference sites during the (1994-1998) initial biocriteria data-gathering phase.  The data are 

limited from the standpoint that most sites were sampled only once.  Collectively, however, the 

sites do represent a reasonable cross-section of Iowa’s perennial wadeable rivers and streams.  

Section 4.2 describes the types of benthic macroinvertebrates and fish found in Iowa's wadeable 

streams.  Statistical analysis of relationships between stream biota and environmental variables 

are discussed in Section 4.3. 

 

 Box and Whisker Plots 

 

Box and whisker plots (see Figure 4 -1) are an easy way of displaying the range of water quality 

values from a group of samples.  Box and whisker plots displayed in this report consist of the 

following:  1) the box represents the interquartile range encompassing all the values between and 

including the 25th percentile and 75th percentile values; 2) the horizontal line through the box 

represents the median (50th percentile) value; 3) the vertical lines (whiskers) extending above and 

below the box represent values that are within a distance 1.5 times greater or lesser than the 

interquartile range, respectively; 4) asterisks indicate high and/or low outlier values that are a 

distance beyond 1.5 times the interquartile range.
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Physical Habitat 

 

Those who are not familiar with Iowa are sometimes surprised by the diversity of landscapes that 

occur within the state.  As reflected by the ranges of physical habitat variables measured at 98 

candidate reference sites (Table 4-1), Iowa’s stream environments might also be considered 

surprisingly diverse.  Types range from warm and sluggish, soft-bottomed prairie streams to cold 

and swift, rocky-bottomed forest streams.   

 

Figure 4-1 shows the ranges of various habitat characteristics of candidate reference stream sites 

grouped by ecoregion.  Within ecoregion groupings, there is a substantial amount of variability 

in physical habitat characteristics.  Despite this variability, the ecoregion effect was statistically 

significant for 75% of the physical habitat variables tested (Analysis of Variance; p<0.05).  

Testing for ecoregion mean differences in physical habitat variables was not done because the 

number of samples was small and unevenly distributed among the ecoregions.  Iowa’s 

probabilistic (random) stream survey to be completed in 2006 will provide a much better data set 

from which to examine ecoregion differences.   

 

Among ecoregions, candidate reference sites of the Paleozoic Plateau (52b) in Northeast Iowa 

ranked highest in levels of coarse rock substrate, riffle habitat amount, stream gradient and 

habitat quality.  Candidate reference sites of the Steeply Rolling Loess Prairies (47e) in 

Southwest Iowa ranked highest in fine sediment amounts, while channel sinuosity and stream 

habitat quality ranked lowest.  Stream shading and large woody debris amounts were lowest 

among candidate reference sites representing the Northwest Iowa Rolling Prairies (47a).   
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Table 4-1.  Statistical ranges of stream physical habitat parameters sampled at 98 candidate 
reference sites: 1994-1998. 

 

Stream Physical Habitat Parameters Minimum 
25th 

Percentile 
50th % 

(Median) 
75th 

Percentile Maximum 
Instantaneous Flow (cfs) 0.1 4 10 26 98 

Gradient (ft./mi.) 0.7 3.6 5.9 11.1 40.5 
Surface Watershed Area (sq.mi.) 5 30 64 144 900 

Segment Sinuosity (x straight line) 1.0 1.3 1.4 1.7 5.3 
Avg. Stream Width (ft.) 7.1 19.8 30.7 41.6 114.3 
Avg. Water Depth (ft.) 0.15 0.56 0.80 1.05 2.36 

Avg. Thalweg Depth (ft.) 0.42 1.07 1.51 1.92 4.18 
Stream Width:Thalweg Depth 4.4 14.7 20.2 30.5 69.0 

% Stream Bottom Area as Clay 0 0 0 4 45 
% Stream Bottom Area as Silt 0 6 10 18 80 

% Stream Bottom Area as Sand 0 18 38 66 92 
% Stream Bottom Area as Fines  

(clay + silt + sand + soil)  6 30 64 84 98 
% Stream Bottom Area as Gravel 0 6 16 30 60 
% Stream Bottom Area as Cobble 0 0 10 24 62 

% Stream Bottom Area as Boulder 0 0 0 2 40 
% Stream Bottom Area as Coarse 

Substrate (gravel + cobble + boulder) 0 8 36 61 89 
% Stream Area as Pools 0 13 25 45 100 
% Stream Area as Runs 0 40 59 77 100 

% Stream Area as Riffles 0 0 9 18 36 
% Stream Area Providing Instream 

Cover for Large, Adult Fish 0 2 6 12 60 
% Bare Lower Stream Bank Area 1 41 61 71 96 

Stream Bank Condition Rating (0-20) 2 7 10 12 19 
Riparian Buffer Rating (0-20) 6 13 16 17 19 

Average % Stream Shaded 3 25 44 64 90 
Habitat Quality Index Score (0-180) 51 88 105 118 144 
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Water Quality  

 

Statistical ranges of water quality parameters sampled at 98 candidate reference sites in Iowa are 

summarized in Table 4-2.  As might be expected from a cross-section sampling of Iowa's 

streams, the ranges of water quality characteristics vary substantially between and within 

ecoregions. The ranges of water quality variables are displayed in Figures 4-2.  Analysis of 

Variance (AOV) was used to examine for ecoregion effects among water quality variables.  The 

effect of ecoregion was significant (p<0.05) for all water quality parameters except stream 

temperature, which is strongly affected by sample date and time.   

 

A few regional patterns are noteworthy.  Dissolved oxygen levels ranked highest among 

candidate reference sites located in the Paleozoic Plateau ecoregion (52) of northeastern Iowa.  

Most of these streams are spring-fed to some degree.  Streams of the Paleozoic Plateau also 

tended to rank low in levels of phosphorus, suspended solids, and turbidity.  Candidate reference 

sites in the Loess Flats and Till Plains (40a) of south central Iowa ranked lowest in pH, dissolved 

solids, hardness, and nitrite+nitrate-nitrogen, while atrazine levels tended to rank higher than 

streams in other ecoregions.  Candidate reference sites located in the Northwest Iowa Loess 

Prairies (47a) ecoregion ranked highest in dissolved solids, nitrite+nitrate-nitrogen, specific 

conductance, and total hardness levels.   



Biological Assessment of Iowa’s Wadeable Streams  Sample Results and Data Analysis 

4-10 

 

Table 4-2.  Statistical ranges of water quality parameters sampled at 98 candidate reference sites: 
1994-1998. 

 

Water Quality Parameter Minimum 
25th 

Percentile 

50th 
Percentile 
(Median) 

75th 
Percentile Maximum

Temperature (C) 8 14.6 18.6 21 26.8 
Diss. Oxygen (mg/L) 4.7 7.7 8.4 9.5 12.6 

pH (std.units) 6.5 7.4 7.7 8 8.6 
Total Hardness (mg/L) 160 260 310 380 470 

Conductivity (umhos/cm) 340 518 625 733 1200 
Dissolved Solids (mg/L) 210 280 340 400 610 

Suspended Solids (mg/L) 1 11 24 41 210 
Turbidity (ntu) 1 8 16 26 80 

NO2+NO3-N (mg/L) <0.1 1.4 4.4 7.3 13 
Total Phosphorus (mg/L) <0.1 <0.1 0.1 0.2 0.7 

Atrazine (ug/L) <0.10 <0.10 0.14 0.21 1.8 
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4.2 Stream Biota and Environmental Relationships 
 

Fish Assemblage 

 

Despite significant historical losses, Iowa’s streams still support a substantial number of fish 

species.  One hundred thirty nine (139) native species of fish and at least nine introduced species 

are thought to reside in Iowa’s waters (Menzel 1981; Harlan and Speaker 1987). Through 2002, 

the stream bioassessment project has sampled a total of 102 fish species.  Iowa’s wadeable rivers 

and streams are dominated by minnows (Cyprinidae), which represented 32% of the species and 

70% of all fish collected between 1994-1998 (Figure 4-3).  Nine species were present in 71% - 

95% samples and comprised 62.5% of the total number of fish sampled (Table 4-3). 

 

Figure 4-3.  Proportional abundance within groups of fish sampled from wadeable rivers and 
streams:  1994-1998.  Numbers of species within each group are listed in parentheses. 

 

 

In 2001, a single Topeka shiner (Notropis topeka) was collected from Buttrick Creek in Greene 

County; otherwise, no other federally endangered species have been collected.  A number of fish 

species listed as threatened (T) or endangered (E) within Iowa have been documented, including: 

American brook lamprey (Lampetra appendix) (T), black redhorse (Moxostoma duquesnei) (T), 
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burbot (Lota lota) (T), freckled madtom (Noturus nocturnus) (E), grass pickerel (Esox 

americanus) (T), orangethroat darter (Etheostoma spectabile) (T), Topeka shiner (Notropis 

topeka) (T).  Exotic fish species collected in the project sampling include:  brown trout (Salmo 

trutta), common carp (Cyprinus carpio), goldfish (Carassius auratus), grass carp 

(Ctenopharyngodon idella), and rainbow trout (Oncorhynchus mykiss),  

 

Table 4-3.  Nine most-commonly sampled fishes from Iowa’s wadeable rivers and streams: 
1994-1998. 

 

Common Name Scientific Name 
% Samples 
Containing % Total Fish Catch 

Creek Chub Semotilus atromaculatus 95% 9.9%
Sand Shiner Notropis stramineus 84% 9.7%
White Sucker Catostomus commersoni 83% 5.4%
Bigmouth Shiner Notropis dorsalis 82% 5.7%
Bluntnose Minnow Pimephales notatus 76% 11.3%
Green Sunfish Lepomis cyanellus 75% 2.4%
Johnny Darter Etheostoma nigrum 74% 3.0%
Central Stoneroller Campostoma anomalum 71% 8.3%
Common Shiner Luxilus cornutus 71% 6.8%

 62.5%
  

 

The number of fish species residing in Iowa’s wadeable rivers and streams varies across major 

drainage basins.  During 1994-1998, 90 fish species were sampled from tributary streams of the 

Mississippi River compared to just 44 species collected from tributaries of the Missouri River.  

Stream fish species richness also varies by ecoregion.  The largest number of species (62) was 

found in the Rolling Loess Prairies (47f), a large and heterogeneous ecoregion that straddles 

several large rivers.  The smallest number of species (25) was found in the Steeply Rolling Loess 

Prairies (47e).  Streams in this ecoregion are greatly altered by channelization and carry high 

sediment loads.  Severe downcutting and channel instability has led to installation of numerous 

grade stabilization structures, which further alter stream habitats and act as barriers to fish 

movements. 

 

Fish species ranges of distribution can expand or contract in response to anthropogenic 

disturbances and natural factors.  The historical ranges of Iowa’s native fish have been 
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documented in periodic statewide fisheries surveys dating back to the late 19th century.  The last 

major statewide fish survey was completed in the 1980s.  One of the benefits of the stream 

biological criteria development project is that it is providing new information to document the 

current distribution of Iowa’s stream fishes.  This data along with other current and historic fish 

survey records from Iowa are being entered in the Integrated River Information System (IRIS) a 

database under development by the Iowa Cooperative Fish and Wildlife Research Unit, Iowa 

State University GIS Facility and IDNR (ICFWRU 2003).  Among many other useful features 

and functions, the web-based database will allow all documented fish survey records to be 

accessed simultaneously, which will make it much easier to analyze trends in fish distribution. 

 

Regional Patterns   

 

In order to use fish as indicators of stream biological integrity, it is important to understand how 

the structure of fish assemblages varies in response to environmental gradients.  With this goal in 

mind, a multivariate statistical analysis was conducted using the 1994-1998 candidate reference 

site data.  The analysis was performed using CANOCO 4©  (terBraak and Smilauer 1998), a 

statistical analysis program that features canonical ordination and regression methods for 

investigating relationships between species assemblages and the environment.   

 

Two primary data analysis methods were used to analyze the data set:  1) Detrended 

Correspondence Analysis (DCA) and 2) Canonical Correspondence Analysis (CCA).  A brief 

description of each method precedes the discussion of analysis results. 

 

1)  Detrended Correspondence Analysis (DCA) 

 

DCA is a multivariate analysis technique that uses iterative steps of reciprocal averaging to 

arrange sample entities (e.g., fish species) in multi-dimensional space.  Entities that are the most 

similar are placed near each other and dissimilar entities are placed far apart (Gauch 1982).  

Using fish assemblage data as an example, DCA constructs unimodal distribution curves that 

represent the abundance and distribution of each species within a set of sample sites.  Along each 
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ordination axis, a species distribution curve will appear, rise to its peak, and disappear over a 

span of approximately 4 standard deviation (S.D.) units.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4-4.  Detrended Correspondence Analysis (DCA) of 1994-1998 fish species abundance 

data from candidate reference stream sites.   
 

(x,y coordinates of plot symbols represent the fish species distribution centroid 
values for the 1st (x) and 2nd (y) ordination axes.  Species that are placed close 
together are more likely to co-occur at sample sites than species that are placed far 
apart.) 

 

Figure 4-4 shows a DCA ordination of fish species sampled from 1994-1998 candidate reference 

stream sites.  Table 4-4 lists the fish species and abbreviations appearing in Figure 4-4.  The dot  
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Table 4-4.  Fish species abbreviations used in DCA and CCA ordination. 
Abbreviation Common Name Scientific Name Abbreviation. Common Name Scientific Name 
AMBR_LAMP Am. brook lamprey Lampetra appendix LARG_STON largescale stoneroller Campostoma oligolepsis
BAND_DART banded darter Etheostoma zonale LONG_DACE longnose dace Rhinichthys cataractae 
BIGM_BUFF bigmouth buffalo Ictiobus cyprinellus LONGN_GAR longnose gar Lepisosteus osseus 
BIGM_SHIN bigmouth shiner Notropis dorsalis MOTT_SCUL mottled sculpin Cottus bairdi 
BLAC_BULL black bullhead Ameiurus melas MUD_DARTR mud darter Etheostoma asprigene 
BLAC_CRAP black crappie Poxomis nigromaculatus NHOG_SCKR northern hog sucker Hypentelium nigricans 
BLAC_DART blackside darter Percina maculata NORT_LOGP northern logperch Percina caprodes 
BLAC_REDH black redhorse Moxostoma duquesnei NORT_PIKE northern pike Esox lucius 
BLAC_TOPM blackstripe topminnow Fundulus notatus NROCK_BAS northern rock bass Ambloplites rupestris 
BLKN_DACE blacknose dace Rhinichthys atratulus ORAN_DART orangethroat darter Etheostoma spectabile 
BLUEGILL bluegill Lepomis macrochirus ORAN_SUNF orangespotted sunfish Lepomis humilus 
BLUN_MINN bluntnose minnow Pimephales notatus OZAR_MINN ozark minnow Notropis nubilus 
BOWFIN bowfin Amia calva PUMK_SUNF pumkinseed Lepomis gibbosus 
BRAS_MINN brassy minnow Hybognathus hankinsoni QUIL_CARP quillback carpsucker Carpiodes cyprinus 
BROO_SILV brook silverside Labidesthes sicculus RAIN_DART rainbow darter Etheostoma caeruleum 
BROO_STIC brook stickleback Culaea inconstans RAIN_TROU rainbow trout Oncorhynchus mykiss 
BROO_TROU brook trout Salvelinus fontinalis RED_SHINE red shiner Cyprinella lutrensis 
BROW_TROU brown trout Salmo trutta REDF_SHIN redfin shiner Lythrurus umbratilis 
BULL_MINN bullhead minnow Pimephales vigilax  RIVE_CARP river carpsucker Carpiodes carpio 
BURBOT burbot Lota lota RIVE_SHIN river shiner Notropis blennius 
CENT_MUDM central mudminnow Umbra limi ROSY_SHIN rosyface shiner Notropis rubellus 
CENT_STON cental stoneroller  Campostoma anomalum SAND_SHIN sand shiner  Notropis stramineus 
CHAN_CATF channel catfish Ictalurus punctatus SAUGER sauger Stizostedion canadense 
COMM_CARP common carp Cyprinus carpio SHOR_REDH shorthead redhorse Moxostoma macrolepidotum 
COMM_SHIN common shiner Luxilus cornutus SHORT_GAR shortnose gar Lepisosteus platostomus 
CREE_CHUB creek chub Semotilus atromaculatus SILV_CHUB silver chub Macrhybopsis storeriana 
EMER_SHIN emerald shiner Notropis atherinoides SILV_REDH silver redhorse Moxostoma anisurum 
FANT_DART fantail darter Etheostoma flabellare SLEN_DART slenderhead darter Percina phoxocephala 
FATH_MINN fathead minnow Pimephales promelas SLEN_MADT slender madtom Noturus exilis 
FLAT_CATF flathead catfish Pylodictus olivaris SLIM_SCUL slimy sculpin Cottus cognatus 
FLAT_CHUB flathead chub Platygobio gracilis SMAL_BASS smallmouth bass Micropterus dolomieu 
FREC_MADT freckled madtom Noturus nocturnus SMAL_BUFF smallmouth buffalo Ictiobus bubalus 
FRES_DRUM freshwater drum Aplodinotus grunniens SPOTF_SHI spotfin shiner  Cyprinella spilopterus 
GIZZ_SHAD gizzard shad Dorosoma cepedianum SREDB_DAC s. redbelly dace Phoxinus erythrogaster 
GOLD_REDH golden redhorse Moxostoma erythrurum STONECAT stonecat Noturus flavus 
GOLD_SHIN golden shiner Notemigonus crysoleucas SUCK_MINN suckermouth minnow Phenacobius mirabilis 
GOLDEYE goldeye Hiodon alosoides TADP_MADT tadpole madtom Noturus gyrinus 
GRAS_PICK grass pickerel Esox americanus TROU_PERC trout-perch Percopsis omiscomaycus 
GRAV_CHUB gravel chub Erimystax x-punctata WALLEYE walleye Stizostedion vitreum 
GREE_SUNF green sunfish Lepomis cyanellus WHIT_BASS white bass Morone chrysops 
HIGH_CARP highfin carpsucker Carpiodes velifer WHIT_CRAP white crappie Poxomis annularis 
HORN_CHUB hornyhead chub Nocomis biguttatus WHIT_SCKR white sucker Catostomus commersoni 
IOWA_DART iowa darter Etheostoma exile YELL_BULL yellow bullhead Ameiurus natalis 
JOHN_DART johnny darter Etheostoma nigrum YELL_PERC yellow perch Perca flavescens 
LARG_BASS largemouth bass Micropterus salmoides 

 

associated with a fish species represents its centroid value of distribution and coordinates along 

the first (x) and second (y) DCA ordination axes.  Distance along the axes is expressed in terms 

of standard deviation units.  Generally, species that are positioned close together tend to overlap 

in their occurrence among sampling sites.  Species that are placed farther apart are less likely to 

co-occur.  In Figure 4-4, some species positioned at the edges of the plot are separated by a 

distance of 4 S.D. or more, thus indicating very little overlap in their occurrence among sampling 
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sites.  Most species are within 4 S.D. units of each other, thereby indicating significant 

distributional overlap.   

 

An understanding of fish habitat preferences is helpful for interpretation of Figure 4-4.  

Generally, the first (x) ordination axis is stretched to the right by species that occur in Iowa’s 

small, high-gradient, cold-water streams (e.g., [SLIM_SCU] Cottus cognatus; [BROW_TRO] 

Salmo trutta).  In contrast, species positioned to the far left tend to occur in larger, low gradient, 

turbid rivers and streams (e.g., [FLA_CATF] Pylodictus olivaris).  The second (y) axis is 

stretched at the top by fish species that are primarily found in northcentral and northeastern Iowa 

in relatively clear, cool streams that have some amount of rock substrate and pool-riffle 

sequences (e.g., [NROCK_BA] Ambloplites rupestris).  Fish species positioned toward the 

bottom of the plot are more likely to occur in turbid, low gradient, soft-bottom streams (e.g., 

[CENT_MUD] Umbra limi).  The ordination of fish species data hints at some of the important 

environmental variables, such as stream gradient and size that influence aquatic community 

structure.  Many of these relationships are examined in more detail later in the chapter.   

 

Ecoregions 

 

Detrended Correspondence Analysis (DCA) was also used to examine the degree of 

correspondence between fish assemblages and ecoregions.  For the analysis, each of the 1994-

1998 candidate reference sites was assigned a level IV ecoregion designation and all of the fish 

species abundance data was included.  Figure 4-19 shows the boundaries of level IV ecoregions 

as well as landform regions and drainage basin units referred to in the report. 

 

The results of the analysis are shown in Figure 4-5.  Each symbol corresponds to a sample site, 

and the type of symbol indicates the ecoregion in which that site is located.  More specifically, a 

symbol represents the centroid value of all the individual species distribution curves for that site.  

Sites that are close together have similar species composition and abundance.  Sites that are far 

apart share relatively little similarity in fish composition.   Along the ordination axes, a complete 

turnover in species composition occurs at a distance of 4 S.D. whereas a 50% turnover in species 

composition occurs in the range of 1.0 – 1.39 S.D. units (Gauch 1982). 
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Figure 4-5.  DCA of fish assemblage 1994-1998 sampling data from stream candidate reference 
sites classified by Level IV ecoregion. 

 
(x,y coordinates of plot symbols represent the sample site fish assemblage centroid 
values for 1st (x) and 2nd (y) ordination axes.  Sites that are placed close together 
have more similarity in fish species composition than sites that are placed far apart). 
 

 

The most noticeable feature of Figure 4-5 is the way the 1st ordination (x) axis is stretched to the 

right by sites in the Paleozoic Plateau ecoregion (52b).  These sites are coldwater streams 

comprised of trout and other stenothermic fish species such as sculpins (Cottus sp.).  Because the 

fish assemblages of these sites are vastly different from most of Iowa's stream fish assemblages, 

the ordination results are strongly skewed by their presence in the data set.  Therefore, to more 

easily examine patterns in fish species composition among the majority of candidate reference 

sites, the analysis was repeated after excluding sites from the Paleozoic Plateau (52b).   
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The DCA plot of candidate reference sites excluding the Paleozoic Plateau sites (Figure 4-6) 

shows a lot of interspersion and no clear groupings of sites by ecoregion.  Perhaps the strongest 

pattern is a lack of overlap in sites representing the Iowan Surface (47c) (solid-black diamond) 

and sites from the Rolling Loess Prairies (47e) (open diamond) of Southwest Iowa.  The Iowan 

Surface fish fauna include many that prefer relatively cool, clear streams having rock substrates.  

The Rolling Loess Prairies streams are part of the Missouri Drainage system of Iowa, which 

contains species that are tolerant of fine sediments and turbidity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-6.  DCA of fish assemblage 1994-1998 sampling data from stream candidate reference 

sites classified by Level IV ecoregion (excluding Paleozoic Plateau (52b) sites).   
 

(x,y coordinates of plot symbols represent the sample site fish assemblage centroid 
values for 1st (x) and 2nd (y) ordination axes.  Sites that are placed close together 
have greater similarity in fish species composition than sites that are placed far 
apart). 
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Great River Basins  

 

Approximately 70% of Iowa’s land surface drains to the Mississippi River and 30% drains to the 

Missouri River before eventually flowing into the Mississippi River (Larimer 1974).  As noted 

earlier, the combined total fish species richness of stream sites located in the Mississippi River 

basin was 204% of the sites in the Missouri River basin.  The relative strength of correspondence 

between candidate reference site fish assemblages and great river basins was examined using 

DCA (Figure 4-7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 4-7.  DCA of fish assemblage sampling data from 1994-1998 stream candidate reference 

sites classified by major drainage basin.   
 

(x,y coordinates of plot symbols represent the sample site fish assemblage centroid 
values for 1st (x) and 2nd (y) ordination axes.  Sites that are placed close together 
have greater similarity in fish species composition than sites that are placed far 
apart). 
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As shown in Figure 4-7, sample sites in the Missouri River basin are clustered fairly-tightly, but 

also are interspersed with some of the Mississippi River basin sites.  The fish assemblages of the 

Mississippi River basin sites are much more variable as indicated by the greater spread of sites 

along both ordination axes. The influence of cold-water stream sites located in the Paleozoic 

Plateau (52b) ecoregion can be seen again in the spread of sites along the 1st ordination (x) axis.   

 

The interspersion of Mississippi and Missouri basin sites was further explored by analyzing data 

from the Southern Iowa Drift Plain (SIDP) landform region.  The SIDP spans most of southern 

and western Iowa, and is considered relatively homogeneous from the standpoint of geologic 

morphology (Prior 1991).  By analyzing data exclusively from sample sites in the SIDP, 

differences in stream fish assemblages that might be attributable to major drainage basin can be 

examined more directly.   

 

DCA was performed on the SIDP data set after classifying sites by ecoregion and major drainage 

basin (Figure 4-8).  The ecoregion units overlapped by the SIDP are represented by different 

symbol shapes (circle, square, and diamond).  Open symbols represent sites from the Mississippi 

drainage basin, while closed symbols represent Missouri drainage basin sites.  Although the 

separation of sites among ecoregion or drainage basin classes is not strong, the DCA plot 

generally shows there is as much site affiliation with drainage basins as ecoregions.  Mississippi 

drainage sites tend to group in the upper-left area of the plot, while Missouri drainage basin sites 

group in the lower-right area.  The results of this analysis affirm that major drainage divides can 

contribute to differences in stream fish assemblages, and therefore, should be considered in the 

development of biological criteria. 
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Figure 4-8.  DCA of fish assemblage sampling data from 1994-1998 stream candidate reference 
sites classified by ecoregion and major drainage basin (MSP=Mississippi [open 
symbols]; MO=Missouri [filled symbols]).  The analysis includes only sample sites 
located in the Southern Iowa Drift Plain landform region. 

 
(x,y coordinates of plot symbols represent the sample site fish assemblage centroid 
values for 1st (x) and 2nd (y) ordination axes.  Sites that are placed close together 
have greater similarity in fish species composition than sites that are placed far 
apart). 
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2)  Canonical Correspondence Analysis (CCA) 

 

A second multivariate statistical analysis method, Canonical Correspondence Analysis (CCA), 

was used to examine the strength of correspondence between fish assemblages and stream 

environmental variables.  CCA is a type of direct gradient analysis in which the data ordination 

is constrained by the environmental variables included in the analysis.  By constraining the 

analysis, the association of variables can be observed more easily.  In the analysis described 

below, CCA was used to test the strength of correspondence between stream fish assemblages 

and various geographic classification schemes, specifically drainage basins, ecoregions, and 

landform regions. 

 

The simplest geographic classification scheme examined using CCA was great river basins (i.e., 

Mississippi River, Missouri River).  A second drainage basin framework was also tested.  The 

framework consists of six drainage basin areas that are referenced in Iowa’s Water Quality 

Standards (IAC. Chapter 567:61) and the biennial Section 305(b) report on Iowa's water quality.  

Each drainage basin area is an aggregate of several individual USGS HUC-8 drainage basins.  

The names of the six drainage basin areas are:  1) Western; 2) Southern; 3) Des Moines River; 4) 

Skunk River; 5) Iowa-Cedar River; 6) Northeastern. 

 

In addition to drainage basins, the association between fish assemblages and Level III and IV 

ecoregions was also examined.  Ecoregions are hierarchical (Figures 3-1, 3-2).  Iowa is covered 

by parts of 4 Level III ecoregions and 10 Level IV ecoregions.  Sample sites were assigned to the 

ecoregion in which the site was located.  In a small number of cases, a portion of the sample 

site's watershed was located in a different ecoregion than the actual sample site. 

 

Table 4-5 lists the statistical output from the CCA analysis.  The first column in the table 

identifies the classification scheme.  The analysis started with the simplest classification scheme 

and proceeded to more complex classification schemes.  The second column gives the ordination 

eigenvalue score, which is a measure of importance or strength.  Eigenvalues range from 0 and 1, 

the larger the value, the greater the correspondence between the fish assemblages and 

classification units.  The eigenvalues reported in Table 4-5 are for the first ordination axis, which 
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typically encompasses the largest proportion of the combined total variance explained by all the 

axes.  The third column reports the p-value of the significance test, which indicates the 

probability that the variance explained by the first ordination axis is equal to zero.  A very small 

p-value (e.g., <0.05) is strong evidence that the ordination axis does explain a significant amount 

of the variance in the fish assemblage data.  The forth column lists the amount of variance in fish 

assemblage data that is explained by the first ordination axis. 

 

All of the classification schemes tested were statistically significant; however, none explained a 

large amount of the variability in fish assemblages (Table 4-5).  The lack of strong 

correspondence is probably attributable to several factors including the broad distribution of 

many Iowa stream fishes, relatively subtle gradients in landscape and stream characteristics, and 

the masking effect of other environmental variables such as stream size.  

 

Table 4-5.  Canonical Correspondence Analysis (CCA) results using various classification 
schemes as explanatory variables of fish assemblage composition. 

 

Classification Scheme 
1st Axis 

Eigenvalue P-Value 

Total % Species Variance 
Explained By First Two 

Canonical Axes 
Mississippi / Missouri 0.19 .01 2.9 
6 WQ Drainage Basin Units 0.37 .005 7.3 
Level III Ecoregions 0.41 .005 7.9 
Level IV Ecoregions 0.46 .005 10.9 
Level IV Ecoregions (Southern 
Iowa Drift Plain Ecoregions 
Aggregated by Msp./ Mo. Basins 

0.46 .005 10.9 

Level IV Ecoregions & Major 
Drainage Basins Combined 

0.52 .01 12.2 

 

 

Level IV ecoregion classes explained 10.9% of the species variance (1st and 2nd canonical axes 

combined).  The eigenvalue of the first canonical axis was 0.46.  In contrast, the six major 

drainage basin units explained 7.3% of the variance in fish assemblage data, and the first 

eigenvalue was 0.37.   By combining ecoregions and drainage basin units, there was a slight 

increase in the amount of variance explained (12.2%) and the length of the 1st axis eigenvalue 

(0.52).   
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Figure 4-9 shows in a graphical format the CCA results using drainage basin units and 

ecoregions as explanatory variables of fish assemblage data.  The lengths of the arrows indicate 

the relative strengths of association, while the directions of the arrows indicate the amount of 

correlation between variables and the ordination axes.  The longest arrows represent variables 

that explain the most variation in fish assemblage composition.  Variables represented by arrows 

that are closely aligned in the same plane are more strongly correlated than variables that are far 

apart and oriented in different planes. 

 

Among the drainage basins and ecoregions, the Paleozoic Plateau (PP-52b) is the strongest 

explanatory variable of fish assemblage composition.  The next strongest explanatory variables 

are the Iowan Surface ecoregion (IS-47c), Northeast drainage basin unit, and the Rolling Loess 

Prairies ecoregion (RLP-47f), respectively.  Not surprisingly, drainage basins and ecoregions that 

geographically-overlap have arrows that are closely aligned and pointing in the same direction 

(e.g., Iowa-Cedar drainage basin and Iowan Surface ecoregion [IS-47c]). 
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Figure 4-9.  Results of Canonical Correspondence Analysis (CCA) of 1994-1998 fish 
assemblage sampling data showing relative strength of association with major 
drainage basin units and ecoregions. 

 
The length and direction of the arrows indicate the relative strength of association 
with fish assemblage composition and the amount of correlation of each variable in 
relation to other variables and to the 1st (x) and 2nd (y) ordination axes.  The longest 
arrows represent variables that explain the most variation in fish assemblage 
composition.  Variables represented by arrows that are closely aligned in the same 
plane are more strongly correlated than variables that are far apart and oriented in 
different planes.  
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Environmental Relationships 

 

A series of multivariate statistical analyses were performed to examine relationships between 

stream environmental variables and fish assemblage data obtained from 98 stream candidate 

reference sites sampled from 1994-1998.  In the first step, Detrended Correspondence Analysis 

(DCA) was used to quantify the total amount variance in fish assemblage that could be explained 

by the unconstrained ordination of fish assemblage samples.  This amount would later be 

compared to amounts of fish assemblage variation explained by combinations of environmental 

variables.   

 

Table 4-6.  Stream environmental variables included in direct gradient analysis of fish species 
composition in candidate reference stream sites from 1994-1998.  

 
Stream Dimensions Substrate / Instream Habitat Stream Bank / Riparian Water Quality 
Surface Drainage Area % Clay Bank Condition Rating Water Temperature 
Stream Gradient % Silt % Bare Stream Bank Dissolved Oxygen 
Stream Sinuosity % Sand % Stream Shading pH 
Wetted Channel Width % Soil/Bank Shade Variability Dissolved Solids 
Maximum Water Depth Total % Fine Sediment Buffer Strip Condition Rating Suspended Solids 
Average Thalweg Depth % Gravel Herbaceous Riparian Veg.* Nitrite+Nitrate- Nitrogen 
Average Water Depth % Cobble Mixed Woody & Herb. 

Riparian Veg.* 
Total Phosphorus 

Channel Width : Depth % Boulder Woody Riparian Veg.* Turbidity 
Stream Flow Total % Coarse Sediment Total Hardness 

% Pool Habitat Specific Conductance 
% Run Habitat Atrazine 
% Riffle Habitat 
Low Coarse Substr. Embedd.* 
Moderate Coarse Substr. 
Embedd.* 
High Course Substr. Embedd.* 
No Riffles w/ Cobble/Boulder 
Substr.* 
Amount of Woody Debris 

 

% Instream Cover 

 

 

* Categorical variable: values are either 1 (occurs) or 0 (does not occur). 

 

In the second step, Canonical Correspondence Analysis (CCA) was used to ordinate the fish 

assemblage data against a master list of 46 stream environmental variables belonging to five 

categories (Table 4-6).  Thirty-nine of the variables are continuous-type variables and seven are 
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categorical variables for which a value of 1 or 0 is assigned, depending on whether the condition 

occurs (1) or doesn't occur (0) within each sample. 

 

Table 4-7 summarizes the results of direct gradient analysis (i.e., ordination of species 

composition constrained by combinations of environmental variables).  There were two or three 

variables within each category that explained a significant amount of variance in fish assemblage 

composition.  The first variable listed within each category axis (i.e., gradient, % coarse 

substrate, % bare lower stream bank, turbidity) was the strongest correlated with the first 

canonical axis.  Similar correlated variables are listed in parentheses.  Generally, physical habitat 

characteristics were more strongly correlated and explained a larger proportion of the variance in 

fish assemblage composition than water quality characteristics.  Turbidity and nitrate-nitrogen 

were the water quality variables that explained the greatest amount of variance in fish 

assemblage data. 

 

The direct gradient analysis model including the entire set of 46 environmental variables 

produced an eigenvalue of 0.530 for the first canonical axis.  The fish assemblage variance 

explained by axes 1-4 was 20.8%, which equates to 57% of the total sample variance captured by 

axes 1-4 in the unconstrained (CA) ordination.  Constraining the analysis to the eleven primary 

stream environmental variables listed in Table 4-7 resulted in a first canonical axis eigenvalue of 

0.433.  The total fish species variance explained by these eleven variables was 72% of the total 

variance explained by all 46 variables.  Stated another way, less than 25% of the stream variables 

explained more than 70% of the total species-environment relationship. 
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Table 4-7.  Results of CCA direct gradient analysis of fish species composition and select stream 
environmental variables from candidate reference stream sites: 1994-1998. 

 
Unconstrained Correspondence Analysis (CA) 1st axis eigenvalue = 0.900  
Length of 1st axis gradient =  5.1 standard deviation units 
Total species variance among sites that is explained by Axis 1 – Axis 4  = 36.2% 

Category of Stream Environmental Variable Canonical 
Correspondence 
Analysis (CCA) 

Stream 
Dimensions 

Substrate / Instream 
Habitat 

Stream Bank / 
Riparian 

Water Quality 

CCA Primary 
environmental variables 
(covariable) 

1.Gradient 
2.Drn. Area 
(Channel Width) 
3.Wdth:Dpth 

1.% Coarse Substrate 
(% Fines) 
2.%Cobble 
3.% Riffle 

1.% Bare Low Bank 
2. Bank Rating 
3.% Shade 

1.Turbidity (Susp. Solids) 
2.Nitrate-N 

CCA 1st axis eigenvalue 
(p-value) constrained by 
primary environmental 
variable  

 
0.314  

(p=0.005) 

 
0.307  

(p=0.005) 

 
0.347 

(p=0.005) 

 
0.203 

(p=0.04) 

% species-variance 
explained by primary 
environmental variables 
(Axis 1)  

4.6% 4.5% 5.1% 3.0% 

Cumulative % species 
variance explained by all 
environmental variables 
(Axes 1– 4) in category 

11.2% 11.8% 10.2% 8.4% 

CCA including all 46 
environmental variables 

0.530 (p=0.005) 
20.8% total species variance (Axes 1–4) 

CCA including 11 
primary environmental 
variables  

 
0.443 (p=0.005) 
14.7% total species variance  (Axes 1-4) 

 

 

Figures 4-10 - 4-13 display the results CCA analysis of Correspondence between fish species and 

stream environmental variables.  Fish species abbreviations used in the graphs are listed in Table 

4-4.   

 

Figure 4-10 can serve as an example to demonstrate the important aspects of the CCA result 

plots.   Each arrow represents an environmental variable in the analysis.  The length of each 

arrow is a direct expression of strength in terms of the amount of species variance explained by 

that variable.  The amount of variance explained by an environmental variable increases in direct 

proportion to the length of the arrow.  Each point on the plot represents a fish species and the x,y 

coordinates of each point correspond to the weighted-average species scores as determined by 

the abundances of each species in each sample, with species variances maximally dispersed 

along the environmental gradient axes.  To reduce clutter, the number of fish species displayed in 
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each plot has been reduced to only the species with variances that are best fitted by the 

ordination axes. The ordination axes are expressed in standard deviation units of species 

turnover.  Species that are separated by four or more standard deviation units apart do not 

overlap in their occurrence among samples.   

 

The relationships between individual fish species and environmental variables can be evaluated 

by examining where each species is plotted in relation to the various arrows representing 

environmental variables.  Each arrow represents a gradient of increasing levels in the direction 

the arrowhead is pointed.  The environmental gradient is not limited to the length of the arrow 

itself.  It can be extended in front of the arrowhead and in the opposite direction through the plot 

origin.  The peak abundance of each species along the gradient represented by a particular 

environmental variable can be found by drawing an imaginary perpendicular line from each 

species dot to where it intersects the arrow's plane. 
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Figure 4-10.  Canonical Correspondence Analysis (CCA) ordination plot of fish species 
abundance and stream dimension variables. 

 

 

Figure 4-10 shows the strength of fish species associations with various stream dimension 

variables.  The first (x) axis is essentially a stream gradient relationship that is stretched far to the 

right of the origin by fish species such as slimy sculpin, brown trout, brook trout, and mottled 

sculpin.  These species occur in the relatively high gradient, cold-water streams of the Paleozoic 

Plateau (#52b) in Northeast Iowa.   

 

The second (y) axis is a shorter gradient that is mostly correlated with watershed drainage area, 

stream width, and average thalweg depth.  Fish species plotted toward the bottom of the plot, 

such as  bigmouth shiner, creek chub, southern redbelly dace, and blacknose dace typically occur 
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in small, headwater streams.  Toward the top of the ordination plot, species such as freshwater 

drum, flathead catfish, and white bass were found mostly in medium to large wadeable rivers and 

streams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-11. CCA of fish species abundance and instream habitat variables. 
 

 

Figure 4-11 shows the CCA results of fish assemblage relationships with instream habitat 

variables.  Percent coarse substrate, particularly the amount of cobble-size substrate, produced 

the strongest gradient among variables in the instream habitat category.  As expected, the 

percentage of total fine substrate was strongly, inversely correlated with percent total coarse 

substrate.  Fish species plotted on the left-hand side of the origin were most abundant at sample 

sites having high amounts of fine sediment, while species plotted to the far right had a strong 
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affinity for sites with abundant coarse substrate.  The second axis is much shorter, and therefore, 

explains less of the variance in fish species composition than amount of coarse substrate.  

Percent abundance of instream cover, % clay substrate, and % woody debris frequency of 

occurrence are the most strongly correlated variables with the second axis. 
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Figure 4-12.  CCA of fish species abundance and stream bank / riparian environmental variables. 
 

 

Figure 4-12 shows the association of fish species and stream bank and riparian environmental 

variables.  The average percentage of bare lower stream bank was one of the longest gradients of 

the environmental variables included in the CCA analysis.  The bank condition rating variable, 

which is visually rated and takes into consideration upper bank stability and vegetation cover, 

was inversely correlated with % bare lower stream bank.  Therefore, sampling sites having high 

percentages of bare lower stream bank tended to also receive low ratings for overall bank 

condition.   
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Figure 4-13.  CCA of fish species abundance and water quality variables. 
 

 

Figure 4-13 shows the association of fish species abundance and water quality variables.  

Turbidity and suspended solids were the two strongest explanatory variables correlated with the 

first canonical axis.  Fish species with projection points displayed on the right side of the origin 

(e.g., red shiner, black bullhead) were most abundant at sites with above-average levels of 

turbidity and suspended solids, while those represented by arrowheads on the left side of the 
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origin (e.g., rainbow darter, slimy sculpin) were most abundant at sites with below-average 

levels.  The arrow representing total phosphorus is pointed in the same direction as the arrows 

representing turbidity and suspended solids.  A large proportion of total phosphorus in Iowa's 

surface waters occurs in association with particulates, so it is not surprising that these variables 

would be correlated.  On the first axis, nitrate-nitrogen is a weaker, but still significant 

explanatory variable of fish assemblage variation.  The second axis is much weaker than the first, 

and it is correlated mostly with temperature and atrazine. 
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Figure 4-14.  CCA ordination plot of fish assemblage composition and primary stream 
environmental variables from Table 4-7. 

 

 

 

Figure 4-14 shows the associations of fish species abundance and the eleven primary 

environmental variables identified through CCA and correlation analysis (Table 4-7).  Several 

interesting species-species associations and species-environmental associations are evident.  For 

example, the cluster of fish species in the lower right quadrant of the plot is indicative of a fish 
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assemblage found predominantly in Northeast Iowa that has a strong preference for streams with 

coarse substrates and riffle habitat.   

 

As indicated by the relative lengths of arrows depicted in the plot, the three strongest explanatory 

variables of fish species abundance were: 1) stream gradient; 2) percent bare lower stream bank; 

and 3) percent total coarse substrate.  Stream gradient was inversely correlated with stream size 

(drainage area) and width:depth ratio.  Percent bare lower stream bank was correlated with 

turbidity and inversely correlated with stream bank condition rating.  Percent coarse (rock) 

substrate was correlated with percent cobble-size substrate and percent riffle habitat.  

 

Relationships within ecoregions 

 

For seven Level IV ecoregions, CCA and RDA (Redundancy Analysis) were used to identify the 

stream environmental variables that appeared to be the most strongly related with stream fish 

assemblages.  RDA is a linear form of canonical ordination analysis that is more suitable than 

CCA when the lengths of primary ordination axes are generally less than two standard deviation 

units (ter Braak 1995).  The ecoregion analyses was done partly to see if there was consistency 

across ecoregions in important explanatory variables, and partly to evaluate whether specific 

habitat variables might be helpful in further classification of reference sites.  Knowledge of 

natural environmental gradients that influence fish assemblage structure can be used to establish 

appropriate reference conditions and biological criteria, and also to ensure that comparisons 

between test sites and reference sites are valid. 

 

Table 4-8 lists the stream environmental variables that explain the largest amount of variability 

in stream fish assemblages within each ecoregion.  No consistent pattern was evident.  Two 

ecoregions had bank and riparian condition as the most highly correlated variables, two other 

ecoregions had stream size (drainage area) as the most important variable, and the remaining 

three ecoregions had instream habitat, longitude, and substrate composition as primary 

environmental variables.   



Biological Assessment of Iowa’s Wadeable Streams  Sample Results and Data Analysis 

4-42 

 



Bi
ol

og
ic

al
 A

ss
es

sm
en

t o
f I

ow
a’

s W
ad

ea
bl

e 
St

re
am

s 
 

 
 

 
 

 
Sa

m
pl

e 
Re

su
lts

 a
nd

 D
at

a 
An

al
ys

is
 

4-
43

 

Ta
bl

e 
4-

8.
  R

es
ul

ts
 o

f d
ire

ct
 g

ra
di

en
t a

na
ly

se
s t

o 
de

te
rm

in
e 

th
e 

m
os

t s
tro

ng
ly

 c
or

re
la

te
d 

en
vi

ro
nm

en
ta

l v
ar

ia
bl

es
 w

ith
 fi

sh
 a

ss
em

bl
ag

e 
co

m
po

si
tio

n 
w

ith
in

 L
ev

el
 4

 e
co

re
gi

on
s (

Fi
gu

re
 3

-2
). 

 S
ig

ni
fic

an
t c

ov
ar

ia
bl

es
 a

re
 li

st
ed

 in
 p

ar
en

th
es

es
. 

 

Le
ve

l 4
 E

co
re

gi
on

 
 

Pa
le

oz
oi

c 
Pl

at
ea

u 
(5

2b
) 

Lo
es

s F
la

ts
 a

nd
 

Ti
ll 

Pl
ai

ns
  (

40
a)

 
N

or
th

w
es

t I
ow

a 
R

ol
lin

g 
Lo

es
s P

ra
iri

es
 (4

7a
) 

D
es

 M
oi

ne
s L

ob
e 

(4
7b

) 
Io

w
an

 S
ur

fa
ce

 
(4

7c
) 

St
ee

pl
y 

R
ol

lin
g 

Lo
es

s P
ra

iri
es

 (4
7e

) 
R

ol
lin

g 
Lo

es
s 

Pr
ai

rie
s (

47
f)

 

N
um

be
r o

f S
am

pl
e 

Si
te

s 
12

 
7 

6 
20

 
21

 
10

 
21

 

C
A

 1
st
 a

xi
s e

ig
en

va
lu

e 
an

d 
le

ng
th

 o
f g

ra
di

en
t 

(s
ta

nd
ar

d 
de

vi
at

io
n 

un
its

) 
0.

90
2 

(4
.4

5)
 

0.
35

5 
(2

.1
8)

 
0.

39
3 

(1
.7

6)
 

0.
50

9 
(3

.7
1)

 
0.

36
9 

(2
.5

8)
 

0.
39

4 
(2

.1
7)

 
0.

63
4 

(3
.7

3)
 

C
C

A
/R

D
A

 P
rim

ar
y 

en
vi

ro
nm

en
ta

l v
ar

ia
bl

es
 

(c
ov

ar
ia

bl
e)

 

1.
B

an
k 

C
on

di
tio

n 
R

at
in

g 
2.

G
ra

di
en

t 
3.

Su
sp

en
de

d 
So

lid
s 

1D
ra

in
ag

e 
A

re
a 

(S
tre

am
 F

lo
w

, 
St

re
am

 W
id

th
) 

2.
G

ra
di

en
t 

1.
.B

an
k 

C
on

di
tio

n 
R

at
in

g 
(B

uf
fe

r R
at

in
g)

 
2.

 %
 W

oo
dy

 D
eb

ris
 (%

 
To

t. 
Fi

ne
s)

 

1.
Lo

ng
itu

de
 

2.
%

 S
ilt

 
3.

 B
uf

fe
r R

at
in

g 

1.
 %

 C
oa

rs
e 

(%
  

To
t. 

Fi
ne

s, 
%

 
A

vg
. B

ar
e 

St
r. 

B
an

k)
 

2.
 D

ra
in

.A
re

a 

1.
 %

 P
oo

l 
2.

 N
itr

at
e-

N
 

(H
ar

dn
es

s)
 

3.
 %

 C
la

y 

1.
 D

ra
in

.A
re

a 
2.

 %
 S

an
d 

3.
 %

 A
vg

. 
Sh

ad
e 

C
C

A
/R

D
A

 1
st
 a

xi
s 

ei
ge

nv
al

ue
 (p

-v
al

ue
) 

co
ns

tra
in

ed
 b

y 
pr

im
ar

y 
en

vi
ro

nm
en

ta
l v

ar
ia

bl
e 

 

 
0.

71
0 

(C
C

A
) 

(p
=0

.0
1)

 

 
0.

50
3 

(R
D

A
) 

(p
=0

.0
15

) 

 
0.

55
3 

(R
D

A
) 

(p
=0

.0
05

) 

 
0.

40
2 

(C
C

A
) 

(p
=0

.0
05

) 

 
0.

32
2 

(C
C

A
) 

(p
=0

.0
05

) 

 
0.

53
3 

(R
D

A
) 

(p
=0

.0
15

) 

 
0.

55
1 

(C
C

A
) 

(p
=0

.0
05

) 

%
 sp

ec
ie

s-
va

ria
nc

e 
ex

pl
ai

ne
d 

by
 p

rim
ar

y 
en

vi
ro

nm
en

ta
l v

ar
ia

bl
es

 
(A

xi
s 1

)  

25
.3

%
 

50
.3

%
 

55
.3

%
 

16
.3

%
 

14
.4

%
 

53
.4

%
 

16
.6

%
 

 



Bi
ol

og
ic

al
 A

ss
es

sm
en

t o
f I

ow
a’

s W
ad

ea
bl

e 
St

re
am

s 
 

 
 

 
 

 
Sa

m
pl

e 
Re

su
lts

 a
nd

 D
at

a 
An

al
ys

is
 

4-
44

 

  



Biological Assessment of Iowa’s Wadeable Streams  Sample Results and Data Analysis 

4-45 

Benthic Macroinvertebrate Assemblage 

 

The wadeable stream biocriteria project has helped to fill information gaps pertaining to Iowa’s 

benthic macroinvertebrate populations.  Through 2001, approximately 435 distinct benthic 

macroinvertebrate taxa had been collected.  The number of taxa increases each year as sampling 

continues.  The University of Iowa Hygienic Laboratory (UHL) documents benthic 

macroinvertebrate collections and maintains a specimen voucher collection.  UHL has worked 

with outside experts to document many new collection records for Iowa. 

 

Aquatic insects are by far the most abundant and diverse group of benthic macroinvertebrates 

collected (Figure 4-15).  In 1994-1998 standard-habitat samples, 95% of the total number of 

organisms and 81% of the benthic macroinvertebrate taxa (taxonomically distinct types) were 

aquatic insects.  The number of mayfly (Ephemeroptera) taxa exceeds the number of taxa 

representing the other aquatic insect orders.  However, Chironomidae, a diverse family of 

Dipterans, are not identified to genus or species in this project.  This group potentially contains a 

very high number of taxa that have yet to be adequately documented in Iowa. 

 

 

Figure 4-15.  Proportional abundance of various groups of benthic macroinvertebrates in 
standard-habitat samples from wadeable rivers and streams: 1994-1998.  (Numbers 
of species or taxa within each group are listed in parentheses.) 
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A secondary benefit from the stream biocriteria project has been increased knowledge of Iowa’s 

biological diversity.  For example, sampling results have demonstrated how levels of benthic 

macroinvertebrate diversity vary across Iowa's ecoregions.  For example, the average number of 

benthic macroinvertebrate taxa per multi-habitat sample was highest (36) for stream sites located 

in the Iowan Surface (47c) and lowest (22) among sites in the Loess Hills and Rolling Prairies 

(47e). 

 

Statewide sampling has led to documenting many species that were previously not recorded from 

Iowa, including species within two important orders of aquatic insects.  Sampling for the 

biocriteria development project and other recent sampling in Iowa have resulted in first state 

records for 27 mayfly (Ephemeroptera) species (McCafferty et al. 2003) and 33 stonefly 

(Plecoptera) species (Heimdal et al. 2004).  Mayflies and stoneflies are valuable indicators of 

stream health because of their known sensitivity to pollution. 

 

Many freshwater mussels are included on the state and federal lists of threatened and endangered 

species.  The sampling methods and objectives of this project were not designed to document the 

occurrence of mussel species in Iowa’s streams.  Because of the imperiled status of many 

species, live mussels typically were not disturbed when observed during sampling.  Only a small 

number of mussel species have been collected since the project began, and none of these is 

considered threatened or endangered. 

 

Regional Patterns 

 

Similar to the analysis of fish assemblage data, a statistical analysis of the 1994-1998 benthic 

macroinvertebrate assemblage data was also performed.  The analysis was part of a project that 

evaluated candidate biological metrics and examined relationships between environmental 

variables and benthic macroinvertebrate assemblage structure (Hubbard 2000).  Some of the key 

findings from the study are discussed below. 

 

Canonical Correspondence Analysis (CCA) was used to examine the effect of ecoregions on 

benthic macroinvertebrate assemblage structure.  The results were consistent with CCA results 
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for fish assemblage structure.  Benthic macroinvertebrate assemblages of stream sites in the 

Paleozoic Plateau (52b) ecoregion were significantly different than benthic macroinvertebrate 

assemblages in all other ecoregions.  The environmental variables that were most strongly 

associated with the Paleozoic Plateau sample sites were stream gradient, amount of coarse 

substrate, amount of riffle habitat, and stream habitat quality score.  Owing to the unique geology 

(in Iowa) of this region, streams in the Paleozoic Plateau tend to rank among the highest in these 

habitat categories.  Benthic macroinvertebrate assemblages of streams located in the adjacent 

Iowan Surface (47c) ecoregion shared the most similarity with Paleozoic Plateau assemblages; 

however, there was enough variability among sites that the ecoregion as a whole was not 

distinguishable from other ecoregions. 

 

Environmental Variables 

 

CCA was also used to examine the strength of relationships between 38 stream environmental 

variables and benthic macroinvertebrate structure.  Forward selection of environmental variables 

was performed using the CANOCO statistical analysis software (Ter Braak et al. 1998).  The 

results of the analysis were consistent with CCA results for fish assemblage structure.  The 

analysis identified twelve variables that correlated the most strongly with stream benthic 

macroinvertebrate assemblages (Table 4-9).  These twelve variables explained a significant 

amount of the total variance in benthic macroinvertebrate assemblages among stream sites 

included in the analysis. 

 

The amount of benthic macroinvertebrate assemblage variability explained by the ordination 

analysis (9.3%) was slightly lower than the amount of fish assemblage variability explained by 

11 environmental variables (14.7%).  The results might suggest that physical habitat is a slightly 

better predictor of fish assemblages than benthic macroinvertebrate assemblages.  However, 

there is also a possibility that sampling bias is partially responsible for the difference.  Physical 

habitat data are collected and summarized at the stream reach scale.  The same is true of fish 

assemblage data.  In contrast, the benthic macroinvertebrate data included data from replicate 

(standard-habitat) samples only.  If benthic macroinvertebrate data from multi-habitat (reach-
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wide) samples had also been included, perhaps a stronger association between benthic 

macroinvertebrate assemblages and physical habitat variables would have been found. 

 

Table 4-9.  Environmental variables correlated with benthic macroinvertebrate assemblage 
structure:  standard habitat samples, 1994-1998. 

 
Stream Morphology 

/ Watershed Instream Habitat Streamside Vegetation Water Chemistry 
Stream Gradient  Habitat Index Score Riparian Veg. Rating Nitrate+Nitrite-N 
Drainage Area % Coarse Substrate % Canopy Shading Conductivity 

Riffle Embedd. Rating 
% Run Habitat 
% Riffle Habitat 

 

% Gravel Substrate 

  

 

The effect of environmental variables on benthic macroinvertebrate structure was examined 

among sample sites within ecoregions.  The results were similar to the fish assemblage analysis 

results, and demonstrated again that within any particular ecoregion there are one or more 

environmental variables that explain a significant amount of variability in biological assemblage 

structure.  The variables that correlate strongest with assemblage structure, however, were not 

necessarily the same within each ecoregion.  As the next section demonstrates, an understanding 

of how biological assemblages are influenced by local environmental attributes can be beneficial 

in developing reference conditions that are representative of different types of streams that occur 

within an ecoregion. 
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4.3 Stream Classification 
 

Landscape classification schemes, such as ecoregions, are often used to capture and reduce the 

natural variability in reference stream characteristics across broad geographic areas, thereby 

improving the sensitivity of biological assessments.  Beyond landscape-scale patterns in stream 

characteristics, there are natural gradients in stream characteristics, such as stream size and 

gradient, that should also be considered when developing a stream classification system.  

 

To evaluate the strength of several alternative stream classification schemes, an analysis of 

reference site fish assemblage and benthic macroinvertebrate assemblage similarity was 

conducted.  Classification strength was tested using methods described by Van Sickle (1997) and 

Van Sickle and Hughes (2000).  Fish and benthic macroinvertebrate species abundance data from 

100 reference sites were used in the analysis.  The Bray-Curtis similarity index was calculated 

for all possible pairings of reference sites.  Index values can range from 0 (no similarity) to 1 

(total similarity) for any pairing of two sites.  The MEANSIM6 software program (U.S.EPA / 

Western Ecology Division) was used to quantify classification strength (CS), which is defined as 

the difference of mean within-class similarity (WSim) and mean between-class similarity 

(BSim).   

CS = Wsim - BSim 

 

Interpretation of Classification Strength Graphs 

 

Bar Graphs (e.g., Figure 4-16) are a convenient way to illustrate the relative strength of different 

classification schemes.  The left end of each bar corresponds to the mean amount of similarity 

among sites belonging to different classification groups (i.e., between class [Bsim]).  The right 

end of each bar corresponds to the mean amount of similarity among sites belonging to the same 

classification group (i.e., within class [Wsim]).  The width of the bar corresponds to 

classification strength [CS] (i.e., difference of mean within class similarity and between class 

similarity), the wider the bar, the greater the classification strength.  The position of the bars on 

the Bray-Curtis index scale (x-axis) is an indicator of the relative level of similarity.  Bars that 
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are aligned on the left side of the scale generally indicate less similarity in benthic 

macroinvertebrate or fish assemblage structure than bars that are placed farther to the right. 

 

Fish Assemblage  

 

Based on fish assemblage similarity analysis, the following ranking of classification strength 

(CS) was obtained:  ecoregions > landform regions > hydrologic basins > Strahler stream order 

(Figure 4-16).  Maximum CS was 0.10, which equates to an overall increase of 10% in fish 

assemblage similarity attributable to Level 4 ecoregion classification.  Ecoregion and drainage 

basin boundaries are displayed in Figure 4-19. 

 

 

Figure 4-16.  Stream classification strengths based on fish assemblage similarity.      
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With three ecoregions, 47(b), 47(c), and 47(f) (Figure 4-19), there were enough sample sites to 

examine the effects of adding layers of classification based on habitat and stream size.  For 

habitat, sites were classified as either "riffle" or "non-riffle" sites.  Riffle sites were required to 

possess each of the following characteristics: (a) % sample reach as riffle > 10%; (b) % substrate 

as cobble or larger- size rock > 10%; (c) total % rock substrate > 30%.  Sites were also assigned 

to one of two stream size classes:  (1) headwater (2nd order); (2) medium-to-large wadeable 

streams (3rd, 4th and 5th order).  

 

 

Figure 4-17.  Stream classification and fish assemblage similarity: A comparison of stream 
reference sites in three, Level IV ecoregions (47b, 47c, 47f). 

 

 

Figure 4-17 displays results from the CS analysis of sites from 47(b), 47(c) and 47(f) ecoregions.  

CS was highest (0.09) for a combination of classification layers including ecoregion, habitat 

type, and stream size.  Stream size (headwater vs. mid-large streams) produced the next highest 
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higher CS than ecoregions alone.  These results demonstrate the importance of considering other 

classification strata besides ecoregions when establishing stream reference conditions. 

 

Benthic Macroinvertebrate Assemblage  

 

Classification strength (CS) based on the similarity of benthic macroinvertebrate assemblages 

was evaluated using the same methods as fish assemblage similarity.  The ranking of landscape 

CS based on benthic macroinvertebrate assemblage similarity was nearly identical to fish 

assemblage similarity, except that CS was slightly weaker.  For example, Level 4 ecoregions 

produced a CS of only 0.05 for benthic macroinvertebrate assemblages compared to 0.10 for fish 

assemblage CS.   

 

Refined CS testing was done using reference site data from ecoregions 47(b), 47(c) and 47(f) 

(Figure 4-19).  As with the fish assemblage analysis, sites were classified by habitat type and 

stream size.  Sites were also grouped by benthic macroinvertebrate sample type:  a) rock 

substrates (Hess or Surber samples), or b) wood-plate artificial substrate (Hester-Dendy 

samples).  Sample type classifications essentially reflect differences in micro-scale habitat. 

 

Figure 4-18 displays the results of the CS analysis of benthic macroinvertebrate assemblage 

similarity in ecoregions 47(b), 47(c) and 47(f).  Interestingly, the highest CS was based on 

sample type (0.06), which was three times stronger than ecoregion CS (0.02).  Habitat-type  (i.e., 

riffle vs. non-riffle) CS was less than sample type (CS), but slightly greater than ecoregion CS.  

Overall, these findings demonstrate the need to consider stream micro- and macro-habitat 

characteristics, in addition to regional classification, when developing reference conditions for 

bioassessment purposes. 
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Figure 4-18.  Stream classification and benthic macroinvertebrate assemblage similarity:  A 
comparison of stream reference sites in three Level IV ecoregions (47b, 47c, 47f). 

. 

 

Summary and Conclusions  

 

Several useful findings were obtained from the statistical analysis of stream classification 

factors:   

 

• Differences in benthic macroinvertebrate and fish assemblage structure occur at varying 

spatial scales.  The analysis found significant differences in aquatic community structure at 

stream reach and sub-reach scales of physical habitat, as well as differences at the drainage 

basin and regional scales.   
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• Ecoregions and other landscape classification schemes explain a significant, but relatively 

small amount of variability in benthic macroinvertebrate and fish assemblage structure.  

Aquatic communities in the Paleozoic Plateau (52b) and Iowan Surface (47c) ecoregions in 

Northeast Iowa differ the most from aquatic communities in the rest of Iowa, particularly 

those in southern and western Iowa. 

 

• Ecoregions are a slightly better classification framework than alternative classification 

schemes including landform regions, major drainage basins, and stream order.  Similarity 

analysis results demonstrated that regional-scale stream classification could be improved by 

combining ecoregion and drainage basins.   

 

• Multivariate ordination analysis found a wide array of stream environmental variables that 

explain a significant amount of the variability in stream biological community structure.  

Benthic macroinvertebrate and fish assemblage similarity analysis results demonstrated that 

stream classification strength could be improved by incorporating habitat or stream size 

classes within ecoregions.   

 

• Further refinement of stream classification can help reduce the variability among reference 

sites and reference conditions.  However, one potential drawback of creating additional 

stream classes is that it would necessitate the identification and verification of more reference 

sites.
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Figure 4-19.  Ecoregion boundaries in relation to landform regions of Iowa (top) and major 

drainage basin units referenced in Iowa’s water quality standards (bottom).   
 
Level III ecoregions are identified by the numeric designator (e.g., 40 – Central 
Irregular Plains) and Level IV ecoregions are identified by the alphabetic 
designator following the number (e.g., 40a – Loess Flats and Till Plains).
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5 Biological Data Metrics and Indexes 

Before biological sample data can become assessment information that is useful for 

resource managers and policy makers, a data synthesis process must first be completed.  

Early attempts at biological data synthesis usually involved calculating a single indicator 

such as Simpson's diversity index (H').  The single indicator approach, however, was not 

effective when applied across broad geographic areas and wide-ranging stream conditions 

(Barbour et al. 1995).  Beginning in the 1980’s, a new movement in biological 

assessment emerged with the advent of the multi-metric index.  A metric is a quantifiable 

attribute or characteristic of the aquatic community that is ecologically relevant and 

responds predictably along an environmental disturbance gradient (Barbour et al. 1995; 

Karr and Chu 1999a; U.S. EPA 1996).  Typically, several metrics are combined to obtain 

a composite index that has greater utility than each of the component metrics.  

 

The multi-metric approach was first demonstrated by Karr (1981; 1986) using the Index 

of Biotic Integrity (IBI) as a tool to evaluate stream conditions in agricultural watersheds 

of the Midwest.  Since then, the IBI approach has been adapted throughout the United 

States and internationally not only for stream fish assemblages, but other biological 

assemblages and other types of freshwater ecosystems (e.g., Hughes and Oberdoff 1999; 

McDonough and Hickman 1999; Mundahl and Simon 1999; Whittier 1999; U.S. EPA 

2002).  Assessments that are based on more than one biological assemblage (e.g., algae, 

amphibians, benthic macroinvertebrates, fish, and macrophytes) also provide a broader 

assessment of resource condition and have greater sensitivity to detect environmental 

degradation (Kremen 1992; Yoder and Rankin 1995). 

 

IDNR began evaluating potential benthic macroinvertebrate and fish metrics using 

sample data from the 1994 pilot study (IDNR 1996).  Useful metrics share the following 

characteristics (Barbour et al. 1995): a) relevant in biological terms and also from a 

resource management perspective; b) sensitive to environmental stressors; c) able to 

distinguish effects of human disturbance from natural variation;
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d) cost-effectively measured without harm to the aquatic resource.  A metric review 

process was completed in 1999 utilizing a process patterned after analysis techniques 

described in the bioassessment literature (Barbour et al. 1995; Barbour et al. 1996; 

Hughes et al. 1998; Mundahl and Simon 1999).  The best metrics were combined to make 

the Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) and the Fish Index of 

Biotic Integrity (FIBI).  The BMIBI and FIBI and their component metrics are described 

in report parts 5.1 and 5.2, respectively.  Part 6 describes how the indices initially have 

been used to assess biological conditions in Iowa's wadeable streams and rivers. 

 

5.1 Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) 
 

The BMIBI is a composite index comprised of twelve individual metrics that are 

designed to provide an objective, quantitative measure of stream biological condition 

based on characteristics of the benthic macroinvertebrate assemblage.  The 12 component 

metrics were selected from a candidate list of 38 candidate metrics (Table 5-1) found in 

biological assessment literature (Barbour et al. 1992; Barbour et al. 1995; Barbour et al. 

1999; DeShon 1995; Karr and Chu 1999b).  These literature sources describe the metrics, 

discuss their ecological basis and patterns of response to environmental disturbance, and 

identify where the metrics have been used in various regions of the U.S.  In selecting 

candidate metric for evaluation, a determination of which metrics could be calculated 

using the data collected for this project was also done. 

 

Each candidate metric was evaluated for the following characteristics: a) ease and 

expense of measurement; b) measurement variability; c) response across gradients of 

stream quality; d) duplication of other metrics.  The metrics are grouped in five general 

categories.  Each candidate metric is also distinguished by the type of sample data from 

which it is calculated.  

 

• Metrics calculated using proportional abundance data obtained from Standard-habitat 

samples are denoted in Table 5-1 by the letter “S”.  At each site, a triplicate set of 

standard-habitat samples is collected from either rock or wood substrates that are 
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situated in riffle or shallow run habitat. 

 

• Metrics calculated using species presence/absence data obtained from a Multi-habitat 

sample are denoted in Table 5-1 by the letter “M”.  One multi-habitat sample is 

collected at each site by handpicking macroinvertebrates from all accessible types of 

benthic habitat including silt, sand, muck, rock, detritus, wood, root mat, and 

vegetation. 

 
 
 
Table 5-1.  Biological data metrics evaluated for use in the Benthic Macroinvertebrate 

Index of Biotic Integrity (BMIBI). 
 

Metric Category 
Taxa 

Composition (S) Balance / Diversity (S) Richness (S/M) Tolerance (S) Trophic Guilds (S) 
Baetidae : 
Ephmrptr. % Dom. Taxon  # Coleoptera taxa  Iowa Tolerance Index % Collector gthr. 

EPT: Chrnmd. % 3-Dom.Taxa  # Diptera taxa Mod. Hilsenhoff 
Biotic Index 

% Dom. functional 
feeding group 

Hydropsychidae : 
Trichoptera % 5-Dom. Taxa  # Ephmrptr. taxa % Sensitive taxa % Filterers 

% Chironomidae Shannon’s Diversity 
Index  # EPT taxa % Tolerant taxa % Predators 

% Coleoptera # Hemiptera taxa % Scrapers 
% Diptera # Odonata taxa Scrprs. : filtrs. 

% Ephmrptr. # Plecoptera taxa Scprs. :  scrprs. + 
fltrs. 

% EPT taxa # Sensitive taxa % Shredders 
% Megaloptera # Total taxa 
% Oligochaeta # Trichoptera taxa 
% Plecoptera 
% Trichoptera 

 

 

 

 

(S) Standard-habitat, proportional abundance data; (M) Multi-habitat presence/absence data 
 

 

5.1.1 Metric Review Process 

 

The four-step process described below was used to evaluate candidate metrics.  The 

evaluation utilized 1994-1997 benthic macroinvertebrate sample data from reference sites 

and test sites.  Table 5-2 contains a summary of metric evaluation results. 
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1.  Measurement (sampling) variability. 

 

The Coefficient of Variation (CV), which is simply the sample standard deviation divided 

by the sample mean, was used to compare the relative amount of sample variability 

among candidate benthic macroinvertebrate metrics.  For standard-habitat metrics, the 

CV from each triplicate set of samples was calculated and the average CV was obtained.  

Replicate samples were not available to evaluate benthic macroinvertebrate metrics 

calculated from multi-habitat sample data.  Instead, the metric variability of annual 

samples was evaluated based on data from three reference sites that were sampled in four 

consecutive years (1994-1997).  A mean CV value from the three sites was obtained and 

the rating categories described below were used.   

 

Candidate metrics received a variability rating of low, medium, or high based on the 

following guidelines:  CV values ranging from 0 – 0.25 were rated as “low” variability; 

CV’s ranging from 0.25 – 0.50 were assigned a rating of “moderate” variability; CV 

values greater than 0.50 received a rating of “high” variability. 

 

2.  Discriminatory Power. 

 

Each candidate metric's ability to distinguish reference sites from impacted sites was 

evaluated using a graphical method and a statistical method.  The graphical analysis, after 

Barbour et al. (1996), involved a comparison of box and whisker plots representing 

metric values from reference sites and impacted sites (Figure 5-1).  Each metric received 

a rating from 0 (poor discriminatory power) – 3 (strong discriminatory power) based on 

the observed degree of separation between reference site and impacted site median values 

and interquartile ranges.  Only data from the Des Moines Lobe (47b) and Rolling Loess 

Prairies (47f) ecoregions were included in the analysis because the number of impacted 

sites sampled in other ecoregions was insufficient.  Impacted sites were identified based 

on the presence of observable physical habitat or water quality impacts, specifically 

including channelization, livestock grazing, and wastewater effluent.  A combination of 

these impacts was present at several sites. 



Biological Assessment of Iowa’s Wadeable Streams Biological Data Metrics and Indexes 

5-5 

 

In the statistical analysis of metric discriminatory power, Analysis of Covariance 

(AOCV) was used to calculate signal:noise ratios for the candidate metrics.  The 

approach used was adapted from Kaufmann et al. (1999).  Ecoregion and site-type were 

used as the main effects in the AOCV model.  The signal:noise ratio was defined as the 

AOCV "F-statistic" result for site-type effect, which represents the ratio of metric 

variability between types of sites  (i.e., reference vs. impact) to metric variability within 

site-types.  Essentially, the larger the F-statistic, the greater is the metric “signal” (i.e., 

ability to distinguish reference sites from impacted sites) in relation to the metric “noise” 

(within group variability).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1.  Example of graphical method for evaluating metric discriminatory power 
(after Barbour et al. 1996).   
 
Metric A, the reference and impacted interquartiles (IQs) overlap and each median 
value lies within the range of the opposing IQ (rating = 0, weak discriminatory 
power); Metric B, the IQ ranges overlap and one median value lies outside the range 
of the opposing IQ (rating = 1); Metric C, the IQs overlap and each median value 
lies outside the opposing IQ (rating = 2); Metric D, the IQs do not overlap and each 
median value lies outside the opposing IQ (rating = 3; strong discriminatory power). 
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Three categories for rating metric discriminatory power based on signal:noise ratio were 

used:   

1) Weak.  Candidate metrics with a signal:noise ratio < 4 were not able to detect a 

significant difference between reference site and impacted sites at the 95% 

confidence level (p>0.05). 

2) Moderately Strong.  Candidate metrics with signal:noise ratio from 4 – 8 were able to 

detect a statistically significant difference between reference sites and impacted sites 

(p<0.05-0.01)   

3) Strong.  Candidate metrics with signal:noise > 8 were able to detect a difference at the 

99% confidence (p<0.01) level. 

 

3.  Stream Gradient Response. 

 

Karr et al. (1986) described the differences in sensitivity to environmental disturbance 

among individual IBI metrics as a strength of the multi-metric index approach.  Ideally, a 

well-designed IBI should contain metrics that respond at both low and high disturbance 

levels, and would also contain metrics that respond consistently across a broader range of 

environmental conditions.   

 

The responses of Iowa candidate benthic macroinvertebrate metrics to gradients in 

physical habitat and water quality were evaluated by correlation analysis and visual 

examination of scatter plots.  Two independent stream quality indicators, Barbour and 

Stribling (1991) habitat quality index and water turbidity level, were used in the analysis.  

The correlation analysis determined the direction and degree of correlation (r-value) and 

the significance level (p-value) of the linear relationships between metrics and 

independent water quality variables.  Scatter plots were constructed for visual 

examination of response patterns and thresholds (Karr and Chu 1999c) with the metric 

(response) variable on the y-axis and the independent stream quality variable on the x-

axis.   
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Metrics were characterized as having a broad response when the correlation analysis and 

scatter plot examination revealed a consistent linear relationship with one or both 

independent stream quality indicators.  A metric was rated as having a narrow response 

when the linear correlation was weak or not significant; however, the scatter plot 

examination identified what appeared to be a response threshold at a specific level in one 

or both stream quality indicators.  Metrics were rated as having an indefinable response 

when there was no correlation with either stream indicator, and examining scatter plots 

revealed no response threshold. 

 

4.  Redundancy  

 

The final step in the metric review process involved examining the amount of correlation 

or excessive redundancy among candidate metrics.  A metric that is highly correlated (r > 

0.81) with another metric is considered potentially redundant in that it might not 

contribute a significant amount of new information to the overall assessment of stream 

biological condition (U.S. EPA 1998b; Mundahl and Simon 1999).  In developing a 

multi-metric biological index, care should be taken to not bias the index by including 

several redundant metrics.  Potentially redundant metrics are listed in the far right column 

of Table 5-2. 

 

5.1.2 Metric Review Summary and Recommendations  

 

Results of the candidate metric review are summarized in Table 5-2.  Twelve metrics 

were considered most useful and recommended for the BMIBI.  The twelve metrics 

provide representation from each of the categories listed in Table 5-1 including: 3 

composition metrics, 1 balance/dominance metric, 5 taxa richness metrics, 1 pollution 

tolerance metric, and 2 trophic composition metrics.  The number and array of metrics is 

consistent with recommendations for constructing a multi-metric index that is responsive 

to wide-ranging levels and types of human influence (Barbour et al. 1999; Karr and Chu 

1999b). 
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The following six BMIBI metrics are considered “core” metrics because they exhibit the 

least measurement variability, greatest power of impact discrimination, and the broadest 

range of response: 1) MH-taxa richness; 2) SH-taxa richness; 3)MH-EPT taxa richness; 

4) SH-EPT taxa richness; 5) % 3-dominant taxa; 6) biotic index.   

 

The remaining six metrics exhibit greater measurement variability (error) and/or a narrow 

range of response.  These metrics are recommended for inclusion in the BMIBI because 

they broaden the dimensionality of the index and increase its capacity to discriminate 

sites that rank at the high or low range of the biological condition gradient.  The 

additional metrics also do not appear to add significant redundancy to the index. 

 

As a final step in the metric evaluation process, a correlation result matrix of the BMIBI 

and twelve component metrics was obtained.  All twelve metrics were significantly 

correlated in the correct (expected) direction in relation to the BMIBI.  None of the 

metrics was highly correlated (r >0.81) with the index, suggesting that none of the 

individual metrics are excessively dominant or redundant.  
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Table 5-2.  Summary of  benthic macroinvertebrate data metrics evaluated for use in 
Iowa wadeable streams. 

 
 
 

Data Metric 

Expected 
Direction of 
Response to 

Declining 
Stream Quality 

Amount of 
Metric 

Sampling 
Variability 

 
Impacted Site 

Discriminatory 
Power 

Stream 
Gradient 
Response 

Range 
Redundancy 

(correlation r >0.81) 
BMIBI Metrics 

1.  MH-taxa richness < low moderately strong broad  
2.  SH-taxa richness < low moderately strong broad SH-EPT, % 5-Dom. Taxa, 

Shannon’s H’ 
3.  MH-EPT richness < low strong broad # MH-Ephmrptr. taxa 
4.  SH-EPT richness < low moderately strong broad SH-taxa, # SH-Ephmrptr. 

taxa 
5.  MH-sensitive taxa < medium strong broad  
6.  % 3-dominant taxa > low strong broad % Dom. Taxon, % 5-Dom. 

Taxa, Shannon’s H’ 
7.  Biotic index > low strong broad  
8.  % EPT < low moderately strong narrow  
9.  % Chironomidae > high strong narrow % Diptera 
10. % Ephemeroptera < medium moderately strong narrow  
11.  % Scrapers < medium moderately strong narrow  
12.  % Dom. functional 
feeding group 

> low moderately strong narrow  

BMIBI (composite of 
above 12 metrics) 

< low strong broad  

Metrics not selected for BMIBI 
Baetidae : Ephmrptr.  >  medium strong broad  
EPT: Chrnmd.  < high strong narrow  
Hydropsychidae : 
Trichoptera  

> low moderately strong narrow  

% Coleoptera  < high strong narrow  
% Diptera > high strong narrow % Chironomidae 
% Megaloptera  < high weak indefinable  
% Oligochaeta  > high weak indefinable  
% Plecoptera  < medium weak indefinable  
% Trichoptera  < high weak indefinable % Filterers 
% Dom. Taxon  > low strong broad % 3-Dom. taxa, % 5-Dom. 

taxa, Shannon’s (H’ 
% 5-Dom. Taxa  > low strong broad SH-taxa, % Dom. taxon, % 

3-Dom. taxa, Shannon’s H’ 
Shannon’s Diversity 
Index (H’) 

< low strong broad SH-taxa, % Dom. taxon, % 
3-Dom. taxa, % 5-Dom. taxa 

# MH-Coleoptera taxa  < high weak indefinable  
# SH-Coleoptera taxa  < medium weak indefinable  
# MH-Ephmrptr. taxa < medium strong narrow MH-EPT  
# SH-Ephmrptr. taxa < low strong narrow SH-EPT  
# MH-Hemiptera taxa > high weak indefinable # SH-Hemiptera  
# SH-Hemiptera taxa > low weak indefinable # MH-Hemiptera 
# MH-Odonata taxa > high weak indefinable  
# SH-Odonata taxa > high moderately strong narrow  
# MH-Plecoptera taxa < low moderately strong narrow  
# SH-Plecoptera taxa < medium weak indefinable  
Iowa Tolerance Index > high weak indefinable  
% Sensitive taxa < high moderately strong broad  
% Tolerant taxa > high strong broad  
% Collector gthr. > medium weak indefinable % Filterers 
% Filterers > high weak indefinable % Coll. gthr., % Trichop. 
% Predators < high weak indefinable  
% Shredders < high weak indefinable  
Scrprs. : filtrs. < high weak indefinable  
Scprs. :  scrprs. + fltrs. < medium weak indefinable  
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5.1.3 BMIBI Metric Descriptions and Scoring Criteria 

 

The twelve BMIBI metrics quantify various attributes of the benthic macroinvertebrate 

assemblage that relate to taxa richness, assemblage balance, pollution tolerance, and 

trophic (feeding) guild composition.  The metrics vary in how they are quantified (i.e. 

integer, proportion, real number); therefore, the ranges of possible values are not 

equivalent.  In order to construct a multi-metric index in which each metric is assigned 

equal weight, it is first necessary to convert raw metric data to standardized, unitless 

metric scores (Karr et al. 1986; U.S. EPA 1996).   

 

The procedures described by Hughes et al. (1998) were used to convert raw metric data 

into standardized BMIBI metric scores ranging from 0–10.  The first step was to create 

scatter graphs of the raw metric data plotted against stream size (see Figure 5-3).  Metric 

adjustments for stream size are a common element of IBI adaptations (Smogor and 

Angermeier 1999).  In a comparative analysis, Log10 surface watershed drainage area 

was chosen over average stream width and Strahler stream order as a surrogate measure 

of stream size.   

 

Following procedures described by Karr et al. (1986) and Lyons (1992), an optimum line 

(e.g. maximum species richness) was established on each metric plot.  The optimum line 

was visually fitted through the data such that 5% of the metric values would fall above 

the line and the remaining 95% of the values would fall below (Karr et al. 1986, Lyons 

1992).  It is important to note that only reference site data were used to establish the 

optimum levels.  Sloping optimum lines were drawn for metrics that exhibited a linear 

relationship with stream size.  After Lyons (1992), the sloped line was changed to a 

horizontal line at the asymptotic point in optimum metric levels (see Figure 5-3).  For 

metrics lacking a linear relationship with stream size, a horizontal optimum line was 

drawn through the data (see Figure 5-6).   In some cases, the metric optimum line has 

been established on an inverted y-axis (see Figure 5-6).  
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After establishing optimum lines, metric scores for individual samples can be determined 

by linear interpolation (Hughes et al. 1998).  A maximum score of ten is given to metric 

values that are plotted on or above the optimum level (the reverse would be true of 

metrics that operate on an inverted scale).  A minimum score of zero is assigned to values 

that fall on or below the minimum level, which is usually set equal to the minimum 

possible metric value.  Metric values that fall somewhere between the optimum and 

minimum levels receive a score between 0 and 10.  The scoring range is continuous and 

can include decimals.  For example, a score of 7.5 would be given for a metric value that 

is plotted 75% of the linear distance between the minimum and optimum levels (Figure 5-

2).  

 

 

Figure 5-2.  Example of metric scoring for Sample A (surface drainage area = 20 
sq.miles; 20 total taxa) and Sample B (surface drainage area = 200 sq.miles; 
39 total taxa) 
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Metric Descriptions 

 

Taxa richness metrics: 

 

1.  Multi-habitat Taxa Richness (MHTR) is the total number of benthic 

macroinvertebrate taxa handpicked from all the different types of benthic habitat that 

occur in a sampling reach (e.g. cobbles, detritus, root mats, vegetation, woody debris).  

As stream size increases from creek to small river, the optimum level of benthic 

macroinvertebrate taxa richness generally increases and then levels off (Figure 5-3).  

 

Benthic macroinvertebrate taxa richness decreases as habitat complexity and/or water 

quality decrease.  The highest levels of taxa richness are generally found in streams that 

have good water quality and diverse benthic habitat.  Conversely, low taxa richness is 

found in streams that have extreme flow fluctuations, monotonous habitat characteristics, 

and poor water quality.    

 

2.  Standard-habitat Taxa Richness (SHTR) is the total number of taxa identified in a 

standard-habitat subsample of 100 organisms.  Two types of standard-habitat samples are 

collected: 1) coarse rock substrates in riffle/run habitat; 2) artificial, wood-plate 

substrates deployed in shallow runs.  The second type is collected in streams that lack 

riffles and coarse substrates.   

 

Rock or wood substrates situated in flowing water can support abundant and diverse 

benthic macroinvertebrate assemblages.  Healthy Iowa streams will support twenty or 

more taxa in a relatively small area (<0.1 m2).  As water quality declines, the benthic 

macroinvertebrate assemblage becomes less diverse. 

 

3.  Multi-habitat EPT richness (MHEPT) is the total number of EPT taxa handpicked 

from all the different types of benthic habitat in the sampling reach.  EPT taxa are benthic 

macroinvertebrates that belong to the pollution-sensitive aquatic insect orders: 

Ephemeroptera, Plecoptera, and Trichoptera.  Pollution sensitivities of EPT taxa range 
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from extremely sensitive to moderately tolerant.  Many EPT taxa are adversely impacted 

by toxic contaminants, such as heavy metals and insecticides.  High quality streams 

support relatively high numbers of EPT taxa.  As stream quality declines, the number of 

EPT taxa also declines.  The MHEPT metric has a broad range of response to varying 

water quality and habitat conditions.   

 

4.  Standard-habitat EPT richness (SHEPT) is the number of EPT taxa identified in a 

standard-habitat subsample of 100-organisms.  Many EPT taxa have a strong affinity for 

coarse substrates situated in flowing water.  In healthy streams, relatively high numbers 

of EPT taxa are expected to colonize this type of habitat.  An absence or reduction in EPT 

taxa suggests there is a water quality problem since suitable habitat for colonization is 

present.  A low number of EPT taxa can also suggest that food resources are unbalanced 

and providing EPT organisms of a particular functional feeding group (e.g., collector-

filterer organisms) a competitive advantage over other EPT taxa.  

 

Note:  It might seem redundant or unnecessary to include taxa richness and EPT richness 

metrics from both multi-habitat and standard-habitat samples.  However, there is an 

important difference in the scale of measurement that ensures both metrics contribute to a 

stronger biological assessment.  The multi-habitat taxa richness metric reflects habitat 

availability and suitability at the stream reach scale in addition to responding to water 

quality conditions.  Standard habitat samples are more indicative of water quality alone 

since habitat is standardized across sites.  

 

When both types of samples are included, there are several possible assessment 

outcomes.  For example, a healthy stream with good water quality and benthic habitat 

diversity will ordinarily support high total numbers of taxa and EPT taxa in both the 

standard habitat and multi-habitat samples.  Conversely, a stream with poor habitat and 

water quality will yield relatively few taxa in both types of samples.  In streams where 

water quality is acceptable but benthic habitat is lacking, taxa richness might be 

reasonably high in the standard-habitat sample and low in the multi-habitat sample.   
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Figure 5-3.  Multi-habitat taxa richness metric (MHTR) (top) and standard-habitat taxa 
richness metric (SHTR) (bottom). 
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Figure 5-4.  Multi-habitat EPT taxa richness metric (MHEPT) (top) and standard EPT 
taxa richness metric (SHEPT) (bottom). 
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5.  Multi-habitat Sensitive Taxa Richness (MHSTR) is the number of sensitive taxa 

handpicked from different types of benthic habitat in the sampling reach.  Sensitive taxa 

are defined as those which have a tolerance value of three or less on the Hilsenhoff Biotic 

Index scale from 0 (no organic enrichment) –10 (severe organic pollution).  This group 

includes the most pollution-sensitive of the EPT taxa and several non-EPT taxa.  The 

number of sensitive taxa is expected to decline as stream water quality declines.  With 

increasing nutrient availability and organic enrichment, sensitive benthic 

macroinvertebrate taxa are replaced by more tolerant, facultative organisms. 

 

The following metrics utilize proportional abundance data and are only calculated 

from standard-habitat samples: 

 

6.  Percent abundance of 3-dominant taxa (P3DOM) is the proportion of the total 

number of organisms represented by the three most-abundant taxa.  This metric is an 

indicator of benthic macroinvertebrate assemblage balance.  P3DOM is inversely related 

to stream biological condition.  Healthy warm water streams have diverse benthic 

macroinvertebrate assemblages in which the majority is comprised of numerous taxa.  As 

stream conditions degrade, an increasingly higher proportion of the assemblage is 

comprised of just a few opportunistic taxa. 

 

7.  Biotic Index (BINDX) is adapted from the Hilsenhoff Biotic Index, which was 

developed as an indicator of stream organic enrichment (Hilsenhoff 1987).  The BINDX 

metric increases in response to increased nutrient and organic enrichment impacts 

including excessive algal or macrophyte growth and dissolved oxygen depletion.  To 

calculate the metric, the proportional abundance of each taxon in the sample is multiplied 

by its tolerance value.  The products are then summed to obtain a weighted-average 

tolerance score.  BINDX metric values can range from 0 (no organic pollution) to 10 

(severe organic pollution); however, in Iowa's streams metric values rarely exceed 6.0.  

To improve the metric’s sensitivity, a minimum (zero score) line was drawn horizontally 

at the lowest measured metric value among reference sites (Figure 5-6). 
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8.  Percent abundance of EPT taxa (PEPT) is the proportion of organisms belonging to 

the aquatic insect orders: Ephemeroptera, Plecoptera, and Trichoptera.  In healthy 

streams, EPT taxa are usually abundant on stable rock or wood substrates situated in 

flowing water. As water quality impacts or siltation problems become severe, EPT 

organisms tend to be replaced by tolerant organisms.  Many EPT taxa are particularly 

sensitive to toxic contaminants such as ammonia, metals, and insecticides.  Their absence 

or rare occurrence in standard habitat samples is strong evidence of a water quality 

problem.  In Iowa streams, The PEPT metric seems to have a narrow range of response 

that is mostly observed in streams experiencing acute or chronic water quality impacts. 
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Figure 5-5.  Multi-habitat sensitive taxa metric (MHSTR) (top) and percent abundance of 
3-dominant taxa (P3DOM) metric (bottom). 
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Figure 5-6.  Biotic Index (BINDX) metric (top) and percent abundance of EPT taxa 
(PEPT) metric (bottom).
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9.  Percent abundance of Chironomidae (PCHR) is the proportion of organisms 

belonging to the midge family (Chironomidae) of aquatic dipterans (true flies).  Midges 

are a very large and diverse group of aquatic insects that are a normal component of 

healthy streams.  Some chironomidae taxa are sensitive to pollution impacts, while others 

are very tolerant of pollution impacts such as organic enrichment, sedimentation, and 

toxic metal loading.  In Iowa streams, chironomids ordinarily comprise a relatively small 

proportion of the organisms in standard-habitat samples.  Where significant water quality 

impacts occur, however, the proportional abundance of chironomids often increases 

dramatically.  The %CHR metric has a relatively narrow range of response that is mostly 

observed toward the lower end of the stream quality spectrum. 

  

10.  Percent abundance of Ephemeroptera taxa (PEPHM).   Ephemeroptera 

(mayflies) are normally abundant in healthy Iowa streams.  As a group, they are 

pollution-sensitive, and several taxa disappear quickly as stream disturbance increases.  

Mayflies compete with many other benthic macroinvertebrates for food resources and 

limited space on coarse substrates such as rocks or woody debris.  At intermediate levels 

of organic enrichment, mayfly taxa are often replaced by filter-feeding caddisflies 

(Trichoptera). 

 

11.  Percent abundance of scraper organisms (PSCR).  The proportion of organisms 

belonging to the scraper functional feeding group generally decreases as streams become 

more organically enriched.  The main food sources utilized by scraper organisms include 

periphyton (attached algae) and organic matter contained in the bio-film that occurs on 

hard substrates.  As streams become more enriched, collector gatherer organisms (e.g., 

Baetidae) or collector filterer organisms (e.g., Simulidae, Hydropsychidae) often become 

dominant in response to greater availability of fine particulate organic matter (FPOM).  

With stream enrichment, there is also a shift from unicellular forms of periphyton to 

filamentous algae, which is not as efficiently utilized by scrapers.  Filamentous algae also 

provide a good environment for colonization by opportunistic taxa. 
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12.  Percent abundance of dominant functional feeding group (PDFFG) is the 

proportional abundance of organisms belonging to the numerically dominant functional 

feeding group.  The metric measures the degree of imbalance in the trophic structure of 

the benthic macroinvertebrate assemblage.  Functional feeding group assignments for 

Iowa's benthic macroinvertebrate taxa are adapted from Merritt and Cummins (1995).   In 

healthy streams, most benthic macroinvertebrates living on coarse substrates belong to 

one of three functional feeding groups: 1) scraper; 2) collector-filterer; 3) collector-

gatherer.  Organisms belonging to other functional feeding groups such as macrophyte 

(herbivore) piercer, predator, and shredder are typically present, but much less abundant.   

 

As stream disturbance increases, one functional feeding group tends to dominate the 

benthic macroinvertebrate assemblage and trophic diversity is reduced (Barbour et al. 

1999).  Extreme dominance by one functional feeding group would indicate there is an 

imbalance in the stream's trophic structure or food web.  For example, elevated levels of 

phytoplankton (FPOM) released from a wastewater lagoon or upstream impoundment 

could cause an imbalance favoring collector filterer organisms. 
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Figure 5-7.  Percent abundance of Chironomidae taxa (PCHR) metric (top) and percent 
abundance of Ephemeroptera taxa (PEPHM) metric (bottom). 
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Figure 5-8.  Percent abundance of scraper organisms (PSCR) metric (top) and percent 
abundance of dominant functional feeding group (PDFFG) metric (bottom). 
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5.1.4 Calculating the Index  

 

There are four basic steps to calculating the BMIBI:   

1) assign classifications and tolerance values to sample data;  

2) calculate metrics;  

3) apply scoring formulas to obtain standardized metric scores; 

4) combine metric scores to obtain BMIBI score.   

 

Table 5-3 lists the metric scoring formulas and instructions for calculating the BMIBI.  

Benthic macroinvertebrate classifications and tolerance values are listed in Appendix 

A1.1.  Two examples of calculating the BMIBI using metric data are shown in Table 5-4.  

Appendix A1 contains more detailed, step-by-step example calculations using benthic 

macroinvertebrate data from two stream sites.   

 

The scoring range of the BMIBI is from 0 to 100.  Table 5-5 contains qualitative scoring 

categories (i.e., excellent, good, fair, poor), and a description of the benthic 

macroinvertebrate assemblage attributes associated with each category.  It is important to 

remember that the categories reflect contemporary biological conditions in Iowa’s 

wadeable streams.  Because of data limitations, it would be difficult, if not impossible, to 

quantify the natural, pre-European biological condition of Iowa’s streams in comparable 

terms.  A descriptive and qualitative analysis, however, would be useful to define an 

historic benchmark at the top of the biocondition scale to measure progress toward 

restoring the biological integrity of Iowa’s rivers and streams.   
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Table 5-3.  BMIBI metric scoring formulas. 

 

# Metric Abbreviation 

Stream 
Drainage Area 

Criterion1 Metric Scoring Formula 

1 Multi-habitat taxa 
richness MHTR LDA<1.85 

LDA>1.85 
(#MH-taxa/(12 + 21.7*LDA))*10 
(#MH-taxa/52)*10 

2 Standardized-habitat 
taxa richness SHTR LDA<2.06 

LDA>2.06 
(#SH-taxa/(4 + 9.08*LDA))*10 
(#SH-taxa/22.7)*10 

3 Multi-habitat EPT 
richness MHEPT LDA<2.11 

LDA>2.11 
(#MH-EPT taxa/(6 + 9.93*LDA))*10 
(#MH-EPT taxa/27)*10 

4 Standardized-habitat 
EPT taxa richness SHEPT LDA<1.93 

LDA>1.93 
(#SH-EPT taxa/(2.4 + 6.37*LDA))*10 
(#SH-EPT taxa/14.7)*10 

5 Multi-habitat sensitive 
taxa richness MHSTR LDA<1.85 

LDA>1.85 
(#MH-snstv.taxa/(2.4 + 4.66*LDA))*10 
(#MH-snstv.taxa/11)*10 

Metrics 6-12 are calculated using standard-habitat sampling data only 

6 % abundance 3-
dominant taxa P3DOM LDA<1.85 

LDA>1.85 
((100 - %3dom.taxa)/(100-(95-31.35*LDA))*10
((100-%3domsp.)/63)*10 

7 Biotic index BINDX All streams ((7-Bindx)/2.7)*10 

8 % abundance EPT taxa PEPT All streams (%EPT/95.5)*10 

9 % abundance 
Chironomidae  PCHR All streams (100-%Chrnmd.)/98.98)*10 

10 % abundance 
Ephemeroptera taxa PEPHM All streams (%Ephmr./78.2)*10 

11 % abundance scraper 
organisms PSCR All streams (%scrpr./44.7)*10 

12 
% abundance dominant 
functional feeding 
group 

PDFFG All streams ((100-%dom.ffg.)/60)*10 

1LDA = Log10 Stream Drainage Area (square miles) 
 
Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) Computation Steps: 
1) Obtain benthic macroinvertebrate taxa classifications and tolerance values from Appendix A1-1. 
2) Calculate metrics (refer to metric descriptions in Section 5.1.3 and instructions in Appendix A1-4). 
3) Compute the metric score for each of the twelve BMIBI metrics; apply the appropriate metric formula depending on 
the stream watershed drainage area.  Each metric scoring range is continuous from 0 - 10 (round metric scores to one 
decimal place); minimum score = 0.0, maximum (optimum) score = 10.0.  In computing metric scores, values less than 
zero or values exceeding ten may occur.  Metric scores less than zero are rounded up to zero; metric scores greater than 
ten are rounded down to ten. 
4) Calculate BMIBI score.  BMIBI = ((Sum of metric scores 1 - 12)*10)/12.  Round BMIBI score to nearest integer; 
possible scoring range is 0 - 100. 
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Table 5-4.  BMIBI computation examples. 
 
 Keigley Branch – Story Co. 

Watershed Assessment Site.  LDA = 1.63 (43 sq.mi.) 

Metric: Metric 
Value Applicable Metric Scoring Formula Metric Score 

1.  MHTR 41 (MHTR /(12 + 21.7*LDA))*10 8.7 
2.  SHTR 12.5 (SHTR/(4 + 9.08*LDA))*10 6.6 
3.  MHEPT 17 (MHEPT/(6 + 9.93*LDA))*10 7.8 
4.  SHEPT 8.5 (SHEPT/(2.4 + 6.37*LDA))*10 6.6 
5.  MHSTR 6 (MHSTR/(2.4 + 4.66*LDA))*10 6.0 
6.  P3DOM 73.7 ((100 - P3DOM)/(100-(95-31.35*LDA))*10 4.7 
7.  BINDX 3.79 ((7-BINDX)/2.7)*10 10.0* 
8.  PEPT 83.7 (PEPT/95.5)*10 8.8 
9.  PCHR 0.5 (100-PCHR)/98.98)*10 10.0* 
10.  PEPHM 79.1 (PEPHM/78.2)*10 10.0* 
11.  PSCR 63.6 (PSCR/44.7)*10 10.0* 
12.  PDFFG 63.6 ((100-PDFFG)/60)*10 6.1 

BMIBI Score 
(Sum 12 metric scores / 12 ) x 10 (round to nearest integer) 

79
 

* metric score was rounded down to max. poss. score of 10. 
 Sugar Creek near Moscow – Muscatine Co. 

Watershed Assessment Site.  LDA = 2.34 (219 sq.mi.) 

Metric: Metric 
Value Applicable metric scoring formula Metric Score 

1.  MHTR 18 (MHTR/52)*10 3.5 
2.  SHTR 9.7 (SHTR/22.7)*10 4.3 
3.  MHEPT 9 (MHEPT/27)*10 3.3 
4.  SHEPT 7.7 (SHEPT/14.7)*10 5.2 
5.  MHSTR 1 (MHSTR/11)*10 0.9 
6.  P3DOM 79.7 ((100-P3DOM)/63)*10 3.2 
7.  BINDX 6.18 ((7-BINDX)/2.7)*10 3.0 
8.  PEPT 87.9 (PEPT/95.5)*10 9.2 
9.  PCHR 11.1 (100-PCHR)/98.98)*10 9.0 
10.  PEPHM 11.4 (PEPHM/78.2)*10 1.5 
11.  PSCR 0.5 (PSCR/44.7)*10 0.1 
12.  PDFFG 75.4 ((100-PDFFG)/60)*10 4.1 

BMIBI Score 
(Sum 12 metric scores / 12 ) x 10 (round to nearest integer) 

39
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Table 5-5.  BMIBI qualitative scoring ranges. 
 

Biological 
Condition 

Rating 
Characteristics of Benthic Macroinvertebrate Assemblage  

76-100 
(Excellent) 

High numbers of taxa are present, including many sensitive species.  EPT taxa 
are very diverse and are numerically dominant in benthic macroinvertebrate 
samples.  Habitat and trophic specialists, such as scraper organisms, are 
present in good numbers.  All major functional feeding groups (ffg) are 
represented, and no particular ffg is excessively dominant.  The assemblage is 
diverse and reasonably balanced with respect to the abundance of each taxon. 

56-75 (Good) 

Taxa richness is slightly reduced from optimum levels; however, good 
numbers of taxa are present, including several sensitive species.  EPT taxa are 
fairly diverse and numerically dominate the assemblage.  The most-sensitive 
taxa and some habitat specialists may be reduced in abundance or absent. The 
assemblage is reasonably balanced, with no taxon excessively dominant. One 
ffg, often collector-filterers or collector-gatherers, may be somewhat 
dominant over other ffgs. 

31-55 (Fair) 

Levels of total taxa richness and EPT taxa richness are noticeably reduced 
from optimum levels; sensitive species and habitat specialists are rare; EPT 
taxa still may be dominant in abundance; however, the most-sensitive EPT 
taxa have been replaced by more-tolerant EPT taxa.  The assemblage is not 
balanced; just a few taxa contribute to the majority of organisms.  Collector-
filterers or collector-gatherers often comprise more than 50% of the 
assemblage; representation among other ffgs is low or absent. 

0-30  (Poor) 

Total taxa richness and EPT taxa richness are low.  Sensitive species and 
habitat specialists are rare or absent.  EPT taxa are no longer numerically 
dominant. A few tolerant organisms typically dominate the assemblage. 
Trophic structure is unbalanced; collector-filterers or collector-gatherers are 
often excessively dominant; usually some ffgs are not represented.  
Abundance of organisms is often low. 

 

 

Recently, the biological criteria program of the U.S. EPA has endorsed the adaptation of 

a multi-tiered biological condition gradient (Davies 2003; Jackson 2003).  The gradient 

captures various levels of biological condition from natural (biological integrity) to 

highly impaired (i.e., not meeting Section 101(a)(2) CWA “fishable” interim use goal).  

The biocondition gradient establishes a consistent framework for conveying biological 

information to resource managers and the public, and it can also serve as a template for 

refining water quality standards and aquatic life use designations.   

 

The conceptual biocondition gradient consists of six tiers that encompass changes in 

structural and functional biological attributes of the aquatic community along a gradient 
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of human influence.  Structural community attributes are mostly related to species 

composition, while functional attributes are more related to biological processes such as 

growth and reproduction of organisms, organic matter decomposition and primary 

production.   

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 5-9.  Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) qualitative 

scoring ranges (excellent, good, fair, poor) in relation to a conceptual tiered 
biological condition gradient (after Davies 2003). 
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BMIBI qualitative categories might align within the tiered biocondition gradient (Davies 

2003).  The range of biological conditions that is measurable using the BMIBI probably 

encompasses Tiers 3-6.  In light of the widespread alterations of Iowa’s landscape and 

historic losses of fish and mussel species described in Part 1 of this report, it is unlikely 

that any Iowa streams currently possess the biological attributes of Tiers 1 or 2.    Tiers 3 

and 4, which encompass gradually increasing losses of rare and sensitive native species 

and slight changes in biological functions, probably capture the biocondition in most of 
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Iowa’s rivers and streams.  Tier 5 is the level at which biological structure and function is 

altered to the point where the interim CWA Section 101(a)(2) “fishable” use goal is not 

likely met.  Tier 6 is a highly degraded biological condition that occurs at the highest 

levels of human disturbance.  Sampling results presented below and in Part 6 indicate that 

a relatively small, but significant, proportion of Iowa streams probably belong in Tiers 5 

or 6. 

 

BMIBI Sample Results 

 

BMIBI scores from 1994-1998 sample sites ranged from 15 (poor) – 90 (excellent), and 

the median score was 63 (good).  Most of the scores were rated either good (60%) or fair 

category (23%).  Only 10% of the values were rated as excellent, and 7% were rated as 

poor.  The distribution of scores was probably skewed toward good biological condition 

since two-thirds of the sites sampled between 1994-1998 were candidate reference sites.  

The 1994-1998 sample sites are listed in Appendix 3.1, and the metric and BMIBI scores 

from each site are listed in Appendix 3.2. 

5.1.5 Ecoregion Patterns 

 

The ranges of BMIBI scores from 1994-1998 candidate reference sites are displayed in 

Figure 5-10.  Ecoregions explained a significant amount of variability in BMIBI scores 

(Kruskall-Wallis Analysis of Variance; p<.001).  Where sample sizes are sufficiently 

large, statistically significant differences between ecoregions can be detected.  For 

example, BMIBI scores from the Des Moines Lobe (47b) (n =20; median = 70) were 

significantly higher on average than BMIBI scores from the Rolling Loess Prairies (47f) 

(n=22; median = 60).  The large variability of BMIBI scores observed in most ecoregions 

suggests that other factors, such as physical habitat or water quality, are important 

determinants of BMIBI levels.  
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Figure 5-10.  Box and whisker plot of 1994-1998 reference site BMIBI scores by 
ecoregion (see Figure 3.3). 

 

5.1.6 Discrimination of Impacted Sites 

 

An important attribute of a biological indicator is the ability to distinguish least-disturbed 
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Figure 5-11.  Box and whisker plot comparison of candidate reference site and impacted 
site BMIBI scores from the Des Moines Lobe (47b) and Rolling Loess 
Prairies (47f) ecoregions. 

 

Figure 5-11 shows good separation of the two types of sites within each ecoregion. 

Statistical analysis results confirmed the BMIBI was able to distinguish the reference 

group from the impacted group.  In statistical terms, the average rank of candidate 

reference site BMIBI scores was significantly greater than the average rank of impacted 
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between and within seasons.  It is important to evaluate seasonal variations in the BMIBI 

because inconsistent or biased samples could lead to invalid bioassessment conclusions.  

Season-related factors that could affect BMIBI sample results include benthic 

macroinvertebrate life cycles, flow stability, and sampling conditions. 

 

Sampling during the summer-early fall index period generally produced the highest and 

most consistent BMIBI scores (Figure 5-12).  Summer samples resulted in the highest 

BMIBI score at each of the sites tested.  The average rank of summer BMIBI scores was 

significantly higher than spring BMIBI scores (Mann Whitney rank sum p<0.05).  

BMIBI score variation of summer samples was also less.  The average BMIBI coefficient 

of variation was 0.06 for summer samples compared to 0.18 and 0.14 for spring and fall 

samples, respectively.  From this limited data, it appears the summer - early fall sample 

index period is preferable to spring or fall for producing optimal and consistent BMIBI 

scores. 
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Figure 5-12.  Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) scores from 

1994-1998 seasonal sampling sites. 
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Reference sites sampled from 1994-2001 show no apparent trend or bias in BMIBI score 

with respect to sampling time (month) within the July 15 - October 15 index period 

(Figure 5-13).  The current sample index period appears to provide satisfactory results 

with respect to between and within sample-season variation.  

 
 

July August September October
10

30

50

70

90

Benthic Macroinvertebrate Index of Biotic Integrity (BMBI)

B
M

IB
I

MONTH
n = 142  

 
Figure 5-13.  1994-2001 BMIBI sample results by month. 
 
 

5.1.8 Standard-Habitat Sample Type 

 

Data analysis results presented in Part 4 demonstrated that differences in benthic 

macroinvertebrate taxa composition are associated with differences in micro-scale habitat 

characteristics such as substrate.  There was greater similarity among benthic 

macroinvertebrate assemblages sampled from rock substrates in riffle habitat than with 

assemblages sampled from wood substrates in run habitat.  This raises the question would 

BMIBI scores also differ significantly depending on the type of benthic 

macroinvertebrate sample collected?  To evaluate this possibility, a two-sample rank sum 

test was used to compare BMIBI scores from wood plate substrate samples with BMIBI 

scores from rock/riffle samples.  Data from 1994-1998 candidate reference sites located 
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in three ecoregions were included in the analysis.  Sample data from other ecoregions 

were not sufficient to be included in the analysis. 

 

Overall, there was no significant difference in the mean BMIBI rank from artificial 

substrate samples compared to the mean BMIBI rank from riffle samples.  Figure 5-14 

shows substantial overlap in the quartile ranges of BMIBI scores grouped by ecoregion 

and sample type.  In both the Des Moines Lobe and Iowan Surface ecoregions, the 

variability of BMIBI scores from artificial substrates was much larger than the variability 

of BMIBI scores from riffle samples. 

 

The observation that differences in benthic macroinvertebrate taxa composition were 

related to substrate type is not necessarily contradictory with the observation that BMIBI 

levels do not appear to differ by substrate type.  The BMIBI is an assemblage-level 

indicator, and therefore, it is not strongly influenced by species identity or the 

presence/absence of any particular species.  For example, if Species A has the same 

trophic classification and pollution sensitivity as Species B, it can be substituted to derive 

the same BMIBI metric scores.  

 

The limited data presented here suggest it may not be necessary to establish separate 

biocriteria for different types of benthic macroinvertebrate standard-habitat samples.  

This data set, however, is not well suited for isolating the effects of sample type.  Side-

by-side sample method comparisons are a better approach for this purpose.  One study of 

Sny Magill Creek in Northeast Iowa compared benthic macroinvertebrate metric levels 

calculated using data from wood plate substrates with metric levels calculated from rock 

substrate samples collected in adjacent riffles (Schueller et al. 1992).  No statistically 

significant differences in metric levels were found, and it was concluded that either 

sample collection method was acceptable for long-term monitoring purposes.    
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Figure 5-14.  Comparison of BMIBI scores using data from two types of standard-habitat 
samples: 1) artificial substrate (wood-plate) samples; 2) riffle (rock 
substrate) samples. 

 
 

5.1.9 Relationships with Physical Habitat and Water Quality Variables 
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correlated with the BMIBI, percent coarse rock substrate (r = 0.42) and percent silt 

substrate (r = -0.48), are substrate composition variables (Figure 5-15).  BMIBI scores 
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where silt was abundant.  Habitat variables that are related to stream size (e.g., depth, 

width, flow, watershed size) were not correlated with the BMIBI.  One reason for this 

could be that scoring for several metrics is adjusted by watershed size.  
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quality variable (r=-0.42).  For most sites, water quality sampling consisted of a single 

grab sample taken during biological sampling.  Without additional sampling, it would be 

hard to expect stronger correlations between the BMIBI and water quality variables.  

Most of the BMIBI correlations with physical habitat and water quality variables 

probably reflect broad regional patterns and gradients in stream conditions.   

 

Table 5-6.  Stream habitat and water quality correlations with Benthic Macroinvertebrate 
Index of Biotic Integrity (BMIBI) scores from 1994-1998 sample sites. 

 

Physical  Habitat Variable 

Correlation 
Coefficient 

(r)* Water Quality Variable 

Correlation 
Coefficient 

(r) 
% Coarse Substrate 0.41 Water Temperature 0.29 
%Gravel Substrate 0.35 Nitrate + Nitrite Nitrogen 0.23 
Habitat Index Score 0.35 Total Hardness 0.10 
Streambank Rating 0.34 pH 0.07 
%Riffle Habitat  0.29 Dissolved Oxygen 0.03 
%Boulder Substrate 0.27 Atrazine 0.02 
%Cobble Substrate 0.26 Specific Conductance -0.03 
Riparian Buffer Strip Rating 0.24 Total Dissolved Solids -0.13 
Stream Channel Slope 0.23 Total Suspended Solids -0.15 
Amount of Stream Shade Variation  0.17 Turbidity -0.21 
Stream flow 0.16 Total Phosphorus -0.42 
Stream Width:Depth Ratio 0.14
%Run Habitat 0.12
Avg. Stream Width 0.10
Ave. Stream Shade Amount 0.06
Surface Watershed Area 0.06
Stream Maximum Depth 0.01
Stream Segment Sinuousity -0.04
%Sand Substrate -0.05
Avg. Stream Thalweg Depth -0.07
Avg. Stream Depth -0.08
%Frequency of Large Woody -0.18
%Clay Substrate -0.24
%Pool Habitat  -0.24
%Instream Cover -0.27
%Bare Streambank -0.32
%Total Fine Substrates -0.38
%Silt Substrate -0.48

 

* Pearson correlation coefficient "r-value".  Bold-highlighted variables have significant linear 
relationships with BMIBI scores (p<0.05). 
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Figure 5-15.  Scatter plots of Benthic Macroinvertebrate Index of Biotic Integrity 

(BMIBI) versus select stream physical habitat variables. 
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Figure 5-16.  Scatter plots of Benthic Macroinvertebrate Index of Biotic Integrity 

(BMIBI) versus select stream water quality variables. 
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5.2 Fish Index of Biotic Integrity (FIBI) 
 
The Fish Index of Biotic Integrity (FIBI), like the BMIBI, is a composite index of several 

individual metrics that provide an assemblage-level assessment of stream biological condition.  

The FIBI contains twelve metrics that quantify different aspects of stream fish assemblages, 

including: species richness, composition and tolerance; proportion of individuals belonging to 

specific feeding and habitat groups; fish abundance and health.   

 

The FIBI was developed using data from 100 candidate reference sites and 55 test sites located in 

eight ecological regions of Iowa.  The sites were sampled between 1994 and 1998.  Reference 

sites were chosen to represent least-disturbed stream habitats within the ecoregions they are 

located.  Test sites were chosen to represent some of Iowa's most common stream impacts such 

as channelization, riparian livestock grazing, and wastewater discharges, or they were chosen as 

part of a watershed assessment project. 

 

FIBI metrics were calibrated using reference site data from warm water perennial streams.  The 

responses of some metrics, particularly species richness metrics, to changes in stream quality are 

different in cold water streams (Lyons 1992; Lyons et al. 1996) than warm water streams.  

Application of the FIBI to cold-water fish assemblage data may lead to erroneous conclusions 

about stream condition.  Therefore, it is strongly recommended the FIBI only be applied to 

perennial warm water streams.  The Midwest cold water stream IBI's developed by Lyons et al. 

(1996) and Mundahl and Simon (1997) are potentially useful alternatives for assessing Iowa's 

cold water streams. 

 

5.2.1 Metric Review  

 

The same methods used to evaluate candidate BMIBI metrics were also used to evaluate 

candidate FIBI metrics.  The candidate list included 31 metrics was compiled from 

bioassessment literature including: Barbour et al. (1995); Barbour et al. (1999); Karr et al. 

(1986); Karr and Chu (1999b); Lyons (1992); Niemala et al. (1999); OEPA (1987).  These 
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literature sources describe the metrics, discuss their ecological basis and patterns of response to 

environmental disturbance, and identify where the metrics have been used in various regions of 

the U.S.  In selecting candidate metric for evaluation, a determination of which metrics could be 

calculated using the data collected for this project was also done. 

 

The candidate metrics were assigned to five general categories (Table 5-7).   As described in 

Section 5.1, the review process looked at four aspects of metric performance: 1) measurement 

variability (sampling error); 2) discriminatory power; 3) stream quality gradient response; 4) 

redundancy (excessive correlation between metrics). 

 

 
 
Table 5-7.  Biological data metrics evaluated for use in the Fish Index of Biotic Integrity (FIBI). 
 

Metric Category 
Species / Taxa 

Richness 
Balance / Diversity / 

Composition 
Trophic and 

Reproductive Guilds Tolerance Fish Abundance 
and Condition 

1. number of (#) 
benthic 
invertivore sp. 

2. # darter sp. 
3. # native fish sp. 
4. # native minnow 

sp. 
5. # round-bodied 

sucker sp. 
6. # sensitive sp. 
7. # sucker sp. 
8. # sunfish sp. 

9. percent abundance (%) 
dominant fish species 

10. % 3-dominant fish 
species 

11. % 5-dominant fish 
species 

12. evenness index 
13. Shannon’s Diversity 

Index (H’)  
14. % green sunfish 
15. % pioneering species 
16. % round-bodied suckers 
17. % white suckers  

18. % benthic invertivores 
19. % invertivores 
20. % omnivores 
21. % top carnivores 
22. % complex parental 

care (nest) spawners 
23. % pelagophils + % 

pelagolithophil 
spawners 

24. % simple lithophil 
spawners 

25. % simple lithophils + 
% lithophil brood 
hiding spawners 

26. % intolerant 
fish 

27. % tolerant 
fish 

28. Fish 
assemblage 
tolerance 
index 

29. catch per 
unit effort 

30. adjusted 
catch per 
unit effort 
(tolerant 
fish 
subtracted) 

31. % DELTS 
(deformatie
s, eroded 
fins, 
lesions, 
tumors) 

 

 

The results of the evaluation process are presented in Table 5-8.  Twelve metrics were 

recommended for the FIBI, including at least one metric from each of the five categories.  The 

number and array of metrics is consistent with recommendations for construction of a multi-

metric index that is responsive to wide-ranging levels and types of human influence (Barbour et 

al. 1999; Karr and Chu 1999b). 
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Six metrics were considered “core” metrics because they showed the least measurement 

variability, greatest discriminatory powers, and broadest ranges of response.  The core metrics 

are 1) #native fish species; 2) #sucker species; 3) #sensitive species; 4) #benthic invertivore 

species; 5) % 3-dominant taxa; 6) fish assemblage tolerance index.  The blend of species 

richness, balance/dominance, and tolerance types of metrics that make up the FIBI core metric 

group is similar in composition to the types of core BMIBI metrics. 

 

The other recommended metrics showed greater measurement variability and/or narrower ranges 

of response.  These metrics will continue to be evaluated.  For now, however, the metrics are 

included because they broaden the dimensionality of the FIBI and increase its ability to 

discriminate sites at low and high ends of the stream quality continuum.  Two metrics, percent 

abundance top carnivores and adjusted catch per unit effort, particularly need further scrutiny.  

Both metrics are widely used in other bioassessment programs (Barbour et al. 1999) and have 

been retained until a more conclusive analysis is completed. 

  

The last step in the metric evaluation process was to examine correlations between the FIBI and 

its twelve component metrics.  The analysis found that all twelve metrics had a significant linear 

relationship with the FIBI and responded in the expected direction (e.g., metric increases with 

increasing FIBI).   None of the metrics was strongly correlated (i.e., r >0.81) with the FIBI, 

suggesting that no individual metric or type of metric is overly dominant within the index. 
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Table 5-8.  Evaluation results for candidate fish assemblage metrics. 
 

 
 
 
 Metric 

Direction Of 
Response To 

Declining 
Stream 

Conditions 

Metric 
Variability
(Sampling 

Error) 

 
Impacted Site 

Discriminatory 
Power 

Stream 
Gradient 
Response 

Range 
 
Potential Redundancy (R >0.81) 

FIBI metrics: 
# native fish species  < low moderately strong broad # sucker sp., # benthic invertivore sp., # 

Round-bodied sucker sp. 
# sucker species < low moderately strong broad # native fish sp., # Round-bodied sucker sp., 

# benthic invertivore species 
# sensitive species < low strong broad  
# benthic invertivore 
species 

< low strong broad # native fish sp., # Round-bodied sucker sp., 
# sucker species, # Darter sp. 

% 3-dominant fish 
species 

> low strong broad % Dom. Sp. 

% benthic invertivores < medium strong broad fish assemblage tolerance index, Evenness 
% omnivores > medium moderately strong narrow  
% top carnivores < high weak narrow  
% simple lithophil 
spawners 

< medium strong broad  

fish assemblage tolerance 
index 

> low strong broad % benthic invertivore sp., %Intolerant fish 
sp. 

adjusted catch per unit 
effort 

< medium week narrow Total catch per unit effort 

% fish with DELTs > high weak narrow  
FIBI (composite of above 
12 metrics) 

< low strong broad  

Metrics not selected for FIBI: 
Shannon’s H’ < low strong broad % Dom. Sp, % 3-dom. fish sp. 
Evenness < low moderately strong narrow % Dom. Sp, % benthic invertivores 
% Dom. Sp. > low strong broad Shannon’s H’, % 3-dom. fish sp., Evenness, 
% 5-Dom. sp. > low strong broad % Dom. Sp, % 3-dom. fish sp, Shannon’s H’ 
%Round-bodied sucker 
sp. 

< medium moderately strong broad  

%White suckers > medium weak broad  
Total catch per unit effort > medium week undefinable adjusted catch per unit effort 
%Pioneering sp. > low moderately strong narrow % Tolerant fish sp. 
Total catch per unit effort < medium weak undefinable  
%Pelagolithophil 
spawners 

> medium weak undefinable  

%Simple lithophil + 
lithophil brood hider 
spawners 

> low weak broad  

% complex parental care 
(nest) spawners 

> low weak undefinable  

# Darter sp. < low strong broad # benthic invertivore species 
# Round-bodied sucker 
sp. 

< low moderately strong broad # native fish species, # sucker species, # 
benthic invertivore species 

# Fish families < low moderately strong broad  
# sunfish sp. < low weak undefinable  
# native minnow sp. < low weak broad  
%Intolerant fish sp. < medium strong broad fish assemblage tolerance index 
% Tolerant fish sp. > low strong broad %Pioneering sp. 
%Invertivore fish sp. < low moderately strong narrow  
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5.2.2 Metric Descriptions and Scoring Criteria 

 

Scatter plots of FIBI metrics were created using candidate reference site sampling data from 

1994-1998 (Figures 5-16 - 5-21).  The same procedures used to establish optimum score lines for 

BMIBI metrics were used to establish optimum score lines for FIBI metrics (see Section 5.1.3).  

Adjustments were made for FIBI metrics that exhibit a linear relationship with stream size.  The 

first four metrics, native fish species richness, number of sucker species, number of sensitive fish 

species, and number of benthic invertivore species, each include a scoring adjustment for major 

river basin (i.e. Mississippi River or Missouri River).  As described in Part 3, Iowa streams in the 

Missouri River basin contain significantly fewer fish species than streams in the Mississippi 

River basin.  To establish appropriate reference expectations for species richness metrics, 

separate optimum levels for each basin were developed. 

 

1.  Native Fish Species Richness (NTVSP) is the total number of native fish species collected 

from the designated sample reach.  In warm water streams, the number of native fish species is 

expected to decrease with declining stream quality.  The presence of many native fish species 

indicates that physical habitat and water quality are suitable to meet the diverse needs of many 

different species.  As reference stream size increases, the optimum level of native fish species 

richness generally increases (Figure 5-17).  The metric has a broad range of response across 

varying levels of stream quality indicators. 

 

Introduced and non-native species, such as the common carp (Cyprinus carpio), can represent a 

large proportion of the fish assemblage in highly disturbed streams; therefore, these species are 

not counted for this metric.  The bluegill (Lepomis macrochirus) and largemouth bass 

(Micropterus salmoides) are commonly stocked in Iowa’s lakes and farm ponds.  Juveniles are 

often found in Iowa's wadeable streams where they are not thought to successfully reproduce.  

Because these species can artificially inflate the native fish species metric, bluegill and 

largemouth bass are classified as introduced species and not counted in this metric. 

 

2.  Number of Sucker Species (SCKRSP) is the number of species belonging to the sucker 

family (Catostomidae).  Suckers are relatively long-lived fish that live near the stream bottom in 



Biological Assessment of Iowa’s Wadeable Streams Biological Data Metrics and Indexes 

5-44 

deeper areas of streams.  Several native sucker species are considered habitat specialists because 

they feed primarily on benthic invertebrates and require silt-free, rock substrates to successfully 

reproduce.  As reference stream size increases, sucker species richness generally increases to 

optimum levels (Figure 5-17).  In Iowa’s warm water streams, the number of sucker species is 

highest in streams that have good physical habitat and water quality characteristics.  The metric 

shows a moderate range of response across varying levels of stream quality indicators.  

 

3.  Number of Sensitive Fish Species (SNSTVF).  As stream conditions deteriorate, fish species 

that are classified as sensitive decline in abundance and will eventually disappear.  Many 

sensitive species are habitat specialists that are less equipped to adapt to stream changes affecting 

their specific habitat niche.  Other sensitive species are intolerant of water quality degradation, 

such as increases in turbidity, nutrient enrichment, and toxins.  The metric has a broad range of 

response across varying levels of stream quality indicators.  As reference stream size increases, 

sensitive fish species richness generally increases to the optimum level (Figure 5-18). 
 

4.  Number of Benthic Invertivore Species (BINV).  Fish species classified as benthic 

invertivores feed predominantly on aquatic insects and other bottom-dwelling 

macroinvertebrates.  The number of benthic invertivore species reaches its highest level in 

streams that have abundant amounts of stable benthic habitat.  The number of benthic invertivore 

fish species is expected to decline in response to physical habitat alterations or water quality 

impacts that reduce the availability of benthic macroinvertebrates.   As reference stream size 

increases, benthic invertivore fish species richness generally increases to the optimum level 

(Figure 5-18). 
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Figure 5-17.  Native fish species richness (NTVSP) metric (top) and sucker (Catostomidae) 
species richness (SCKRSP) metric (bottom).
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Figure 5-18.  Sensitive fish species richness (SNSTVSP) metric (top) and benthic invertivore fish 

species richness (BINVSP) metric (bottom). 
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5.  Percent Abundance of Three Dominant Fish Species (P3DOM) is the proportion of 

sampled fish represented by the three most-abundant fish species.  This metric is an indicator of 

balance in the fish assemblage that is inversely related to stream biological condition.  Healthy 

warm water streams have diverse fish assemblages in which a majority of individuals is 

distributed among many species.  As stream conditions worsen, an increasingly higher 

proportion of the total number of fish is comprised of just a few opportunistic and tolerant 

species.  In reference streams, the percent abundance of the three dominant fish species generally 

decreases with increasing stream size (Figure 5-19). 

 

6.  Percentage of Fish as Benthic Invertivores (PBINV) is the proportion of sampled fish that 

predominantly feed on benthic macroinvertebrates.  The metric is an indicator of stream benthic 

habitat quality as it relates to production of aquatic insects and invertebrates for fish.  Streams 

that are impacted by pollution or sedimentation are less likely to support abundant benthic 

invertebrate populations.  Consequently, the proportion of fish as benthic invertivores is expected 

to decline in response to deteriorating stream quality. 

 

7.  Percentage of Fish as Omnivores (POMNV) is the proportion of sampled fish that are 

omnivorous feeders (i.e., fish diet consists of significant quantities of both plant and animal 

matter, including detritus).  This metric is expected to increase in response to deteriorating 

stream quality.  Omnivorous fish species have opportunistic feeding habits, and are able to derive 

nutritional value from a broad array of food items.  Omnivorous fish generally become more 

abundant in streams that are enriched by nutrients and organic matter. 

 

8.  Percentage of Fish as Top Carnivores (PTOPC).  The proportion of fish that are top 

carnivores (i.e., fish constitute a significant part of diet as adults) is an indicator of stream 

physical habitat complexity and stability.  Top carnivore species often require pools or other 

areas of concealment such as woody debris snags in order to rest and stalk their prey.  Viable 

populations of minnows and other prey fish must also be present to support large piscivorous 

fish.  The proportion of fish as top carnivores is expected to decline in response to deteriorating 

stream quality.  
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Figure 5-19.  Percent abundance of three dominant fish species (P3DOM) metric (top) and 
percentage of fish as benthic invertivores (PBINV) metric (bottom). 
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Figure 5-20.  Percentage of fish as omnivores (POMNV) metric (top) and percentage of fish as 

top carnivores (PTOPCV) metric (bottom).
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9.  Percentage of Fish as Simple Lithophilous Spawners (PSLTH) is the proportion of 

sampled fish belonging to the simple lithophil-spawning guild.  Simple lithophils lay their eggs 

over rock substrates in streams and provide no paternal care in terms of nest preparation or 

maintenance.  The reproductive success of simple lithophils is adversely impacted by 

sedimentation, which fills in the interstitial spaces of rocks where fertilized eggs incubate.  The 

metric is expected to decline in response to deteriorating stream quality. 

 

10.  Fish Assemblage Tolerance Index (TOLINDX).  The fish assemblage tolerance index is a 

simplified version of the Hilsenhoff Biotic Index (Hilsenhoff 1987).  The metric is calculated by 

summing each of the products of species proportional abundance and species tolerance value 

(see below).  Species tolerance classifications are listed in Appendix 2.2.  Each species is 

assigned a tolerance value of either 0 (sensitive), 5 (intermediate), or 10 (tolerant). 

 

 

Fish Assemblage Tolerance Index: 

 s      ni ( TVi )                                 Where:      s = no. species in fish assemblage sample 
∑     _________                                                                     ni = no. individuals of species i 

i=1             N                                                                                    TVi = tolerance value* of species i 
                                                                        N = total no. individuals in sample 
 
* fish tolerance values: sensitive species = 0; intermediate tolerance species = 5; tolerant species = 10. 

 

 

Similar to how the HBI operates, a stream that supports a relatively large proportion of sensitive 

species and species of intermediate sensitivity will have a lower tolerance index score compared 

to a stream that is dominated by tolerant fish species.  The fish assemblage tolerance index is 

expected to increase in response to declining stream quality. 

 

Metric Scoring Adjustment for Low Fish Abundance.  A scoring adjustment (SA) is used to 

cap the maximum possible score of metrics 5-10.  The purpose of the scoring adjustment is to 

add additional discriminatory power to the FIBI in very degraded systems and to prevent metric 

scores and the FIBI from becoming artificially inflated when fish abundance is low and 
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proportional abundance metrics are less statistically reliable.  Low-end adjustments of the FIBI 

were developed after recommendations of Rankin and Yoder (1999) based on the Ohio 

bioassessment experience.   

 

The following graduated maximum score cap is applied to proportional metrics 5-10:  

• Total # fish / 500 feet stream length < 25, metric score = 0 
• Total # fish / 500 feet stream length > 25 and < 50, maximum possible metric score = 2.5 
• Total # fish / 500 ft. stream length > 50 and < 75, maximum possible metric score = 5.0 
• Total # fish / 500 ft. stream length > 75 and < 100, maximum possible metric score = 7.5  
• Total # fish / 500 ft. stream length >100, maximum possible metric score = 10.0 

 

11.  Adjusted Catch Per Unit Effort (ADJCPUE) is the number of fish collected per 100-foot 

stream length, excluding individuals that are classified as tolerant and/or exotic/introduced 

species.  Healthy Iowa streams are expected to support reasonably high numbers of native fishes.  

High numbers of tolerant or exotic/introduced species can occur in streams that are organically 

enriched or disturbed.  Therefore, for this metric only, fish classified in Appendix 2.2 as tolerant 

or exotic/introduced species are subtracted from the total number of sampled fish.   

 

Lyons (1992) observed that fish abundance actually reaches a maximum at intermediate levels of 

stream disturbance.  Taking this into consideration, a special procedure was used to establish the 

optimum line for the ADJCPUE metric (Figure 5-22).  The metric values were first plotted 

against reference site fish index of biotic integrity (FIBI) scores calculated with all the FIBI 

metrics except ADJCPUE.  The ADJCUE metric scores were obtained for the sites having the 

highest FIBI scores.  The ADJCPUE optimum level was then set equal to the ADJCPUE that 

was matched or exceeded by 5% of sites with the highest FIBI scores. 

 

12.  Percentage of Fish with Deformities, Eroded fins, Lesions, or Tumors (PDELT) is the 

proportion of sampled fish that exhibit at least one DELT anomaly.  Normally the proportion of 

fish with DELTs is very low (i.e., <2% of sample) in streams that are not subjected to chronic 

pollution impacts (Sanders et al. 1999).  Either 5 or 10 points are subtracted from the final IBI 

score in cases where the proportion of fish with DELTs slightly or substantially exceeds natural 

background levels of occurrence for external physical anomalies (Figure 5-22). 
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Figure 5-21.  Percentage of fish as simple lithophilous spawners (PSLTH) metric (top) and fish 

assemblage tolerance index (TOLINDX) metric (bottom).   
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Figure 5-22.  Adjusted catch per unit effort (ADJCPUE) metric (top) and percentage of fish with 

deformities, eroded fins, lesions and tumors (PDELT) metric (bottom). 

Fish Abundance (excluding tolerant species)

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000

Surface Drainage Area (sq.mi.)

 (n
o.

 fi
sh

 / 
10

0 
ft.

 s
tre

am
)

10 pts.

0 pts.

% Abundance Fish with DELTS
 (Deformaties, Eroded Fins, Lesions, Tumors)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1 10 100 1000
Surface Drainage Area (sq.mi.)

%
 F

is
h 

w
/ D

E
LT

s

Deduct 5 pts.

Deduct 10 pts.



Biological Assessment of Iowa’s Wadeable Streams Biological Data Metrics and Indexes 

5-54 

 

5.2.3 Calculating the Index  

 

Two examples showing how to calculate the FIBI are provided in Appendix 2.  Metric scoring 

formulas and FIBI calculation instructions are listed in Table 5-9 and Appendix 2.1.  Fish species 

classifications needed to calculate metrics are listed in Appendix A2.2.   

 

The FIBI has a possible scoring range from 0-100.  Table 5-10 provides qualitative scoring 

categories and guidelines for interpreting FIBI scores.  The guidelines represent a general 

framework for relating FIBI scores to fish assemblage attributes.  It is important to remember 

that the categories reflect contemporary biological conditions in Iowa’s wadeable rivers and 

streams.  Because of data limitations, it would be difficult, if not impossible, to quantify the 

natural, pre-European biological condition of Iowa’s streams in comparable terms.  A descriptive 

and qualitative analysis, however, would be useful to define an historic benchmark at the top of 

the biocondition scale to measure progress toward restoring the biological integrity of Iowa’s 

rivers and streams.   

 

Recently, the biological criteria program of the U.S. EPA has endorsed the adaptation of a multi-

tiered biological condition gradient (Davies 2003; Jackson 2003).  The gradient captures various 

levels of biological condition from natural (biological integrity) to highly impaired (i.e., not 

meeting Section 101(a)(2) CWA “fishable” interim use goal).  The biocondition gradient 

establishes a consistent framework for conveying biological information to resource managers 

and the public, and it can also serve as a template for refining water quality standards and aquatic 

life use designations.   

 

The conceptual biocondition gradient consists of six tiers that encompass changes in structural 

and functional biological attributes of the aquatic community along a gradient of human 

influence.  Structural community attributes are mostly related to species composition, while 

functional attributes are more related to biological processes such as growth and reproduction of 

organisms, organic matter decomposition and primary production.   
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Table 5-9.  FIBI metric scoring formulas and index calculation instructions. 

 

# Metric Definition Metric Abbrv. 
Stream Drainage 
Area Criterion Metric Scoring Formula 

1a Native fish species richness - 
Mississippi Basin NTVSP-MSP LDA<2.10 

LDA>2.10 
(NTVSP/(16.67*LDA))*10 
(NTVSP/35)*10 

1b Native fish species richness - Missouri 
Basin NTVSP-MO LDA<1.95 

LDA>1.95 
(NTVSP/(11.79*LDA))*10 
(NTVSP/23)*10 

2a Sucker species richness- Mississippi 
Basin SCKRSP-MSP LDA<2.45 

LDA>2.45 
(SKCRSP/(3.26*LDA))*10 
(SCKRSP/8)*10 

2b Sucker species richness- Missouri 
Basin SCKRSP-MO LDA<2.5 

LDA>2.5 
(SCRSP/(2.0*LDA))*10 
(SCKRSP/5)*10 

3a Sensitive fish species richness - 
Mississippi Basin SNSTVSP-MSP LDA<2.1 

LDA>2.1 
(SNSTVSP/(5.71*LDA))*10 
(SNSTVSP/12)*10 

3b Sensitive fish species richness - 
Missouri Basin SNSTVSP-MO LDA<2.1 

LDA>2.1 
(SNSTVSP/(1.43*LDA))*10 
(SNSTVSP/3)*10 

4a Benthic invertivore fish species 
richness - Mississippi Basin BINVSP-MSP LDA<2.0 

LDA>2.0 
(BINVSP/(6.0*LDA))*10 
(BINVSP/12)*10 

4b Benthic invertivore fish species 
richness - Missouri Basin BINVSP-MO LDA<2.25 

LDA>2.25 
(BINVSP/7)*10 
(BINVSP/(3.11*LDA))*10 

Metrics 5-10:  IF total number of fish per 500 ft. stream length < 100, THEN refer to scoring adjustment (SA) below. 

5 Percent abundance three dominant fish 
species P3DOM LDA<1.65 

LDA>1.65 
((100-P3DOM)/(39*LDA))*10 
((100-P3DOM)/64.35)*10 

6 Percent fish as benthic invertivores PBINV LDA<2.55 
LDA>2.55 

(PBINV/(23.84*LDA))*10 
(PBINV/60.8)*10 

7 Percent fish in as omnivores POMNV LDA<1.5 
LDA>1.5 

((80-POMNV)/(80-(50-30.5*LDA)))*10 
((80-POMNV)/75.75)*10 

8 Percent fish in sample as top 
carnivores  PTOPC  LDA <2.4 

LDA>2.4 
(sq.rt.PTOPC/(2.67*LDA-1.4))*10 
(sq.rt.PTOPC/5.0)*10 

9 Percent fish as simple lithophilous 
spawners PSLTH LDA <2.5 

LDA>2.5 
(PSLTH/(12*LDA))*10 
(PSLTH/30.0)*10 

10 Fish assemblage tolerance index TOLINDX All streams ((10 - TOLINDX)/6.3)*10 

SA 

FIBI metrics 5-10 scoring adjustment for low fish abundance: 
-- IF total # fish / 500 ft. stream length < 25, THEN metric score is zero (0) 
-- IF total # fish / 500 ft. stream length > 25 and <50, THEN maximum possible metric score is 2.5 
-- IF total # fish / 500 ft. stream length >50 and <75, THEN maximum possible metric score is 5.0 
-- IF total # fish / 500 ft. stream length >75 and <100, THEN maximum possible metric score is 7.5 

11 Adjusted catch per unit effort  ADJCPUE All Streams (ADJCPUE/100)*10 

12 

PDELT - All Streams.  Scoring adjustments for abnormally high proportion of fish with DELTS (Deformaties, Eroded 
fins, Lesions, Tumors): IF  % fish in sample with DELTS > 2.0 & < 4.0 THEN subtract 5 from total FIBI score (if total 
# fish / 500 ft. stream < 100, then subtract 2.5).   IF  % fish in sample with DELTS > 4.0 THEN subtract 10 from total 
FIBI score (if total # fish / 500 ft. stream < 100, then subtract 5). 

FIBI Scoring Instructions: 
1. Calculate data metrics.  Refer to metric descriptions (Section 5.2.1) and fish species classifications (Appendix 2.2). 
2. Calculate metric scores.  Apply appropriate metric scoring formula depending on drainage basin (metrics 1,2,3,4) and 

stream drainage area (metrics 1-9).  If sample has low total number of fish, apply the scoring adjustment (SA) for metrics  
5-10.  Metric scoring ranges are continuous from 0–10.  Minimum possible score = 0; maximum possible score = 10 (for 
certain metrics it is possible to calculate a score <0 or >10; these scores are automatically rounded to 0 and 10, 
respectively).  

3. Calculate FIBI score.  FIBI = (sum of metrics 1-11)*(10) /11.  If applicable, adjust FIBI score for PDELT (#12) metric. 
Round score to nearest integer.  FIBI scoring range is 0-100. 
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Table 5-10.  Fish Index of Biotic Integrity (FIBI) qualitative scoring guidelines.  
 

Biological 
Condition 

Rating 
Characteristics of Fish Assemblage  

71-100   
(Excellent) 

Fish (excluding tolerant species) are fairly abundant or abundant.  A high number of 
native species are present, including many long-lived, habitat specialist, and 
sensitive species.  Sensitive fish species and species of intermediate pollution 
tolerance are numerically dominant.  The three most abundant fish species typically 
comprise 50% or less of the total number of fish.  Top carnivores are usually present 
in appropriate numbers and multiple life stages.  Habitat specialists, such as benthic 
invertivore and simple lithophilous spawning fish are present at near optimal levels.  
Fish condition is good; typically less than 1% of total fish exhibit external anomalies 
associated with disease or stress. 

51-70  
(Good) 

Fish (excluding tolerant species) are fairly abundant to very abundant. If high 
numbers are present, intermediately tolerant species or tolerant species are usually 
dominant.  A moderately high number of fish species belonging to several families 
are present. The three most abundant fish species typically comprise two-thirds or 
less of the total number of fish.  Several long-lived species and benthic invertivore 
species are present.  One or more sensitive species are usually present.  Top 
carnivore species are usually present in low numbers; however, one or more life 
stages of each species are often missing.  Species that require silt-free, rock substrate 
for spawning or feeding are present in low proportion to the total number of fish.  
Fish condition is good; typically less than 1% of the total number of fish exhibits 
external anomalies associated with disease or stress. 

26-50  
(Fair) 

Fish abundance ranges from lower than average to very abundant.  If fish are 
abundant, tolerant species are usually dominant.  Native fish species usually equal 
ten or more species.  The three most abundant species typically comprise two-thirds 
or more of the total number of fish.  One or more sensitive species, long-lived fish 
species or benthic habitat specialists such as suckers (Catostomidae) are present.  
Top carnivore species are often, but not always, present in low abundance.  Species 
that are able to utilize a wide range of food items including plant, animal and detritus 
are usually more common than specialized feeders, such as benthic invertivore fish.  
Species that require silt-free, rock substrate for spawning or feeding are typically 
rare or absent.  Fish condition is usually good; however, elevated levels of fish 
exhibiting external anomalies associated with disease or stress are not unusual. 

0-25 
(Poor) 

Fish abundance is usually lower than normal or, if fish are abundant, the assemblage 
is dominated by a few species.  The number of native fish species present is low.  
Sensitive species and habitat specialists are absent or extremely rare.  The fish 
assemblage is dominated by just a few ubiquitous species that are tolerant of wide-
ranging water quality and habitat conditions.  Pioneering, introduced and/or short-
lived fish species are typically the most abundant types of fish.  An unusually high 
number of fish with external physical anomalies is more likely to occur. 
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Although additional customization for Iowa might be needed, Figure 5-9 depicts how the FIBI 

qualitative categories might align within the tiered biocondition gradient (Davies 2003).  The 

range of biological conditions that is measurable using the FIBI probably encompasses Tiers 3-6.  

In light of the widespread alterations of Iowa’s landscape and historic losses of fish and mussel 

species described in Part 1 of this report, it is unlikely that any Iowa streams currently possess 

the biological attributes of Tiers 1 or 2.  Tiers 3 and 4, which encompass gradually increasing 

losses of rare and sensitive native species and slight changes in biological functions, probably 

capture the biocondition in most of Iowa’s rivers and streams.  
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Figure 5-23.  Fish Index of Biotic Integrity (FIBI) qualitative scoring ranges (excellent, good, 
fair, poor) in relation to a conceptual tiered biological condition gradient (after 
Davies 2003). 

 

Tier 5 is the level at which biological structure and function is altered to the point where the 

interim CWA Section 101(a)(2) “fishable” use goal is not likely met.  Tier 6 is a highly degraded 

biological condition that occurs at the highest levels of human disturbance.  Sampling results 

presented below and in Part 6 indicate that a relatively small, but significant, proportion of Iowa 

streams probably belong in Tiers 5 or 6. 
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Sample Results 

 

There was a substantial range in FIBI scores calculated from the 1994-1998 sample data used to 

calibrate and test the index.   A high score of 85 (excellent) was attained in the Little Cedar 

River, Floyd County and the low score of 4 (poor) was measured in Keg Creek, Mills County 

(Appendix 3.3).  The median score was 43 (fair).  The majority of sites received either a "fair" 

rating (49%) or "good" rating (28%) for fish assemblage condition, while smaller proportions of 

sites were rated as either "poor" (13%) or "excellent" (10%).  The distribution of scores was 

probably skewed toward good biological condition since two-thirds of the sites sampled between 

1994-1998 were candidate reference sites.  The 1994-1998 sample sites are listed in Appendix 

3.1, and the metric and FIBI scores from each site are listed in Appendix 3.2 

5.2.4 Ecoregion Patterns 

 

.Analysis of the 1994-1998 candidate reference site data found that levels of the FIBI vary 

significantly (Kruskall-Wallis AOV; p<0.001) between ecoregions (Figure 5-24).   
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Figure 5-24.  1994-1998 candidate reference site FIBI scores by ecoregion. 
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In general, FIBI scores from northcentral and northeastern Iowa streams ranked higher than FIBI 

scores from southern and southwestern Iowa streams.  The Iowan Surface (47c) ecoregion had 

the highest mean FIBI rank, which was significantly different (p<0.05) than mean FIBI ranks for 

the Steeply Rolling Loess Prairies (47e), Loess Flats and Till Plains (40a), and Rolling Loess 

Prairies (47f) (Figure 5-24).  Many of the ecoregions encompass wide ranges in FIBI scores, 

which suggests there are other important factors that impact FIBI scores, such as physical 

habitat.   The influence of certain physical habitat variables is discussed in greater detail later in 

this section. 

5.2.5 Discrimination of Impacted Sites 

 

To test the FIBI's discriminatory capability, a graphical and statistical analysis of FIBI scores 

was conducted using data from reference sites and impacted sites in two ecoregions.  The 

ecoregions, Des Moines Lobe (47b) and Rolling Loess Prairies (47f), were among the few that 

had sufficient numbers of both types of sites to conduct the analysis (Figure 5-25).   
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Figure 5-25.  Box and whisker plot comparison of candidate reference site and impacted site 

FIBI scores from the Des Moines Lobe (47b) and Rolling Loess Prairies (47f) 
ecoregions. 
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Figure 5-25 shows reasonably good separation of FIBI box and whisker plots of the two site 

groupings from each ecoregion.  The impacted group consisted of sites affected by common 

types of stream disturbance, including channelization, riparian livestock grazing, and wastewater 

discharges.  The Mann Whitney Rank Sum test was used to statistically confirm the FIBI's 

ability to distinguish reference sites from impacted sites,.  In both ecoregions, candidate 

reference site FIBI scores ranked significantly higher (p<0.01) than impacted site FIBI scores. 

5.2.6 Season and Sample Month 

 

Three candidate reference sites were sampled in spring, summer, and fall from 1994-1998 in 

order to evaluate the temporal variability of the FIBI and the appropriateness of the designated 

sample index period (Figure 5-26).  Summer samples were taken within the normal sample index 

period (July 15 - October 15), while spring and fall samples were taken outside of the index 

period.  It is important to evaluate seasonal variations in the FIBI because inconsistent or biased 

samples could lead to invalid bioassessment conclusions.  Season-related variables that might 

influence biological assemblage sampling results include climate, life stage, migration, and 

stream flow. 

 

Season effect on the FIBI was not as pronounced as with the BMIBI.  Although, summer 

samples produced the highest individual FIBI scores at each site, the difference between season 

means was statistically significant for only one site.  White Fox Creek FIBI scores from summer 

samples ranked significantly higher (Mann Whitney Rank Sum; p<0.05) than spring and fall 

FIBI scores.  The average FIBI coefficient of variation was 0.08 for summer samples compared 

to 0.06 and 0.13 for spring and fall samples, respectively.  From these limited data, it appears 

samples from the summer-early fall index period are comparable or better than spring or fall 

samples for producing optimal and consistent FIBI scores. 

 

Reference sites sampled from 1994-2001 show no apparent trend or bias in FIBI score with 

respect to sampling time (month) within the July 15 - October 15 index period (Figure 5-27).  

The current sample index period appears to be providing satisfactory results from the 

perspectives of between and within sample-season comparisons. 
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Figure 5-26.  Fish Index of Biotic Integrity (FIBI) results from seasonal sampling sites:  
1994-1998. 
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Figure 5-27.  1994-2001 FIBI sample results by month. 
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5.2.7 Physical Habitat  

 

Multivariate analysis results (Part 4) and correlation analysis results demonstrate a relationship 

between stream physical habitat characteristics and FIBI levels.  Among the habitat variables that 

were most strongly correlated with the FIBI are 1) cobble substrate; 2) total coarse substrate; 3) 

riffle habitat.  These results suggest natural differences in substrate composition and macro-

habitat might be important enough to merit consideration of separate FIBI reference criteria.   

 

A statistical analysis was conducted to examine for significant differences in FIBI levels 

associated with different physical habitat classifications.  To conduct the analysis, criteria for 

each habitat characteristic listed above were used to assign candidate reference sites from three 

ecoregions to one of two habitat classes:   

 

• Class 1  (Riffle) - streams having abundant coarse substrates and stable riffle habitat;  

a) > 10% stream reach area as cobble and/or boulder substrate;  

b) > 30% stream reach area as coarse rock substrate (gravel+cobble+boulder+bedrock);  

c) > 10% stream reach area classified as riffle habitat. 

• Class 2 (Non Riffle) - streams lacking abundant course substrates and stable riffle habitat.   

Includes all candidate reference sites not meeting Class 1 criteria. 

 

Figure 5-28 displays the ranges of FIBI scores for each ecoregion / habitat class.  Within each 

ecoregion tested, FIBI scores from Class 1 candidate reference sites ranked significantly higher 

(Mann Whitney Rank Sum; p<0.05) than FIBI scores from Class 2 candidate reference sites.  

These results indicate that physical habitat-based FIBI reference criteria should be considered for 

the ecoregions tested.  More sampling and data analysis are needed to determine whether 

separate criteria for other ecoregions are merited. 
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Figure 5-28.  Ranges of FIBI scores for two habitat classes and three ecoregions. 
 

 

5.2.8 Relationships with Physical Habitat and Water Quality Variables 

 

For a biotic index like the FIBI to be useful, it should demonstrate relationships with abiotic 

indicators of stream quality.  Multivariate statistical analyses described in Part 4 documented 

significant relationships between stream fish assemblages and several physical habitat and water 

quality variables.  Perhaps not surprisingly, the FIBI is correlated with many of the same stream 

variables (Table 5-11).  Scatter plots showing FIBI relationships with several habitat variables 

are displayed in Figure 5-29.  Generally, good or excellent levels of the FIBI are associated with 

sites that have good instream and riparian habitat characteristics.  More than 40% of the 

variability in 1994-1998 FIBI scores was explained by a qualitative habitat index (Barbour and 

Stribling 1991).  The index is an assessment tool that combines visual observations of twelve 

variables that relate to channel morphology, instream habitat, and riparian habitat.  It 

encompasses many of the same habitat variables that are individually correlated with the FIBI. 

 

The FIBI was also correlated with nutrient and sediment-related water quality variables.  FIBI 

levels generally decrease in relation to increasing levels of phosphorus, suspended solids, and 
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water turbidity (Figure 5-30).  Generally, FIBI correlations with water quality variables were 

fewer and weaker than physical habitat correlations (Table 5-11).  Turbidity was the most 

strongly correlated water quality variable (r=-0.39).  For most sites, water quality sampling 

consisted of a single grab sample taken during biological sampling.  Without additional 

sampling, it would be hard to expect stronger correlations.  It is likely that FIBI correlations with 

water quality, and also to some extent physical habitat, reflect broad regional patterns in stream 

characteristics and FIBI assemblages.  

  

 

Table 5-11.  Pearson correlation coefficients for physical habitat and water quality variables 
correlated with the Fish Index of Biotic Integrity (FIBI): 1994-1998 sample sites. 

 

Physical Habitat Variable 
Correlation 

Coefficient (r) Water Quality Variable 
Correlation 

Coefficient (r) 
Habitat Index Score 0.65 Total Hardness 0.03 
% Coarse Substrate 0.58 Water Temperature 0.03 
%Cobble Substrate 0.54 Nitrate + Nitrite Nitrogen 0.00 
Streambank Rating 0.48 Atrazine 0.00 
%Riffle Habitat  0.45 Dissolved Oxygen -0.01 
Riparian Buffer Strip Rtg. 0.41 Specific Conductance -0.04 
%Gravel Substrate 0.36 pH -0.15 
%Boulder Substrate 0.35 Total Dissolved Solids -0.16 
Amount of Stream Shade Variation  0.32 Total Phosphorus -0.31 
Stream Channel Slope 0.24 Total Suspended Solids -0.36 
Avg. Stream Width 0.23 Turbidity -0.39 
Ave. Stream Shade Amount 0.16
Stream Width:Depth Ratio 0.13
Stream Maximum Depth 0.11
Stream Segment Sinuousity 0.09
Surface Watershed Area 0.05
Streamflow 0.03
Avg. Stream Thalweg Depth -0.03
Avg. Stream Depth -0.05
%Run Habitat -0.08
%Pool Habitat  -0.09
%Frequency of Woody Debris -0.15
%Instream Cover -0.17
%Sand Substrate -0.30
%Silt Substrate -0.30
%Clay Substrate -0.40
%Bare Streambank -0.52
%Total Fine Substrates -0.55
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Figure 5-29.  Relationships of the Fish Index of Biotic Integrity (FIBI) and selected stream 

physical habitat variables. 
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Figure 5-30.  Relationships of the Fish Index of Biotic Integrity (FIBI) and selected stream water 

quality variables. 
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6 Applications 

 

The stream biological assessment framework described in this report has helped meet 

several monitoring and assessment needs.  Current uses of bioassessment information 

include problem investigation, project evaluation, status/trend monitoring, and TMDL 

development.  Stream biological assessment has also become an important component of 

IDNR's water quality assessment and impaired waters listing process.  Described below 

are several ways in which stream biological data are being used to monitor and assess the 

biological health of Iowa's wadeable rivers and streams. 

 
6.1 Aquatic Life Use Support 
 

A methodology to assess the status of warm water stream aquatic life uses based on 

biological sampling data has been developed (IDNR 2003).  The assessment results are 

used to prepare Iowa's biennial [Section 305(b)] water quality report and [Section 303(d)] 

impaired waters list.  To determine the level of aquatic life use support, the Benthic 

Macroinvertebrate Index of Biotic Integrity (BMIBI) and Fish Index of Biotic Integrity 

(FIBI) scores from a sample site are compared against index levels measured at reference 

stream sites located in the same ecological region.  Using reference data from 1994-2001, 

a set of Biological Impairment Criteria (BIC) was specifically developed for the 2002 

305(b) report (Table 6-1).  A stream was considered biologically impaired if at least one 

of the index scores was significantly lower than reference levels. 

 

The 25th percentile values for ecoregion reference site BMIBI and FIBI index scores were 

used to establish the BIC.  Use of the reference 25th percentile as an impairment threshold 

is consistent with biocriteria development guidance (U.S. EPA 1996), and has 

demonstrated efficacy in state bioassessment programs (Yoder and Rankin 1995).  Biotic 

index performance evaluation in Iowa found little or no overlap of index interquartile 

ranges between reference sites and test sites (see Figures 5-10, 5-23), which suggests that 

reference 25th percentile levels are appropriate for assessing biological impairment.
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In three ecoregions (47b, 47c, 47f), reference sites are also grouped by habitat class (i.e., 

riffle streams vs. non-riffle streams) for comparison of FIBI scores.  A comparison of 

reference site FIBI scores from these ecoregions, found the mean score from sites 

classified as riffle habitat was significantly higher than the mean score from sites 

classified as non-riffle habitat (see Figure 5-26).  The mean difference was not significant 

for BMIBI scores (see Figure 5-13), therefore, separate BIC were not established.  

 

 
Table 6-1.  Biological Impairment Criteria (BIC) used to assess support of B(LR) and 

B(WW) aquatic life uses of Iowa’s wadeable warm water streams for the 2002 
Section 305b assessment. 

 

Ecoregion: FIBI BMIBI 
40(a) – Central Irregular Plains (CIR) / Loess Flats 
and Till Plains 33 (Fair) 46 (Fair) 

47 – Western Corn Belt Plains (WCBP)  Subregions: 
47(a) – WCBP / Northwest Iowa Loess Prairies 40 (Fair) 53 (Fair) 
47(b) – WCBP / Des Moines Lobe 
                (Stable Riffle Habitat) 
                (No Stable Riffle Habitat) 

 
55 (Good) 
32 (Fair) 

 
63 (Good) 
63 (Good) 

47(c) – WCBP / Iowan Surface 
               (Stable Riffle Habitat) 
               (No Stable Riffle Habitat) 

 
71 (Excellent) 

43 (Fair) 

 
59 (Good) 
59 (Good) 

47(d) – WCBP / Missouri Alluvial Plain na* na 
47(e) – WCBP / Steeply Rolling Loess Prairies 31 (Fair) 56 (Good) 
47(f) – WCBP / Rolling Loess Prairies  
            (Missouri Drainage System) 
            (Mississippi Drainage System) 
               (Stable Riffle Habitat) 
               (No Stable Riffle Habitat) 

 
31 (Fair) 

 
41 (Fair) 
34 (Fair) 

 
56 (Good) 

 
53 (Fair) 
53 (Fair) 

47(m) – WCBP / Western Loess Hills na na 
52(b) – Driftless Area (DA) / Paleozoic Plateau  59 (Good) 61 (Good) 
72(d) – Central Interior Lowland (CIL) / Upper           
Mississippi Alluvial Plain na na 

* na (BIC not available) 

 

Because the number of reference sites is insufficient, BIC are not available for ecoregions 

47d, 47m, and 72d.  Most streams flowing through these ecoregions originate in other 

ecoregions, which adds to the difficulty of establishing appropriate bioassessment 

thresholds.  A relatively small number of stream sites in these ecoregions have been 
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evaluated on a case-by-case basis.  Typically, the BIC from adjacent ecoregions have 

been applied to determine aquatic life use support for these segments. 

 

Similar to the assessment approach used by OEPA (Yoder and Rankin 1995), an 

uncertainty margin of + 7 index points is applied when assessing stream sites based on a 

single bioassessment sample.  When more than one bioassessment sample is available for 

a stream segment, the average index values are compared to the BIC to determine use 

support status, and the 7-point margin is not applied.  Essentially, the margin is used to 

account for natural temporal variability and/or sampling error.  Based on an analysis of 

repetitive sampling data obtained from three reference sites during 1994-1998, seven 

points was determined to be a typical variation in individual index scores during a four-

year period.  This amount of variation is similar to the 95% confidence interval of + 8 

points reported by Stribling et al. (1999) for a single sample of the Wyoming stream 

benthic IBI on a scale of 100.   

 

The level of aquatic life use support is determined in the following manner: 1) If both the 

BMIBI score and the FIBI score exceed the applicable BIC by more than 7 points, the 

site is assessed as fully supporting aquatic life uses; 2) If either or both index scores are 

within 7 points of the BIC, and neither is more than 7 points below the BIC, the site is 

assessed as fully supporting/threatened; 3) If either index score, but not both are more 

than 7 points below the BIC, the site is assessed as partially supporting; 4) If both index 

scores are more than 7 points below the BIC, the site is assessed as not supporting uses. 

 

Aquatic life use assessment results 

 

Since 1994, 204 stream segments encompassing 2,412 miles of stream have been 

assessed.  A combined total of 84 stream segments encompassing 972 stream miles 

(40%) have been assessed as biologically impaired (i.e. partially supporting or not 

supporting aquatic life uses.   
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Figure 6-1 shows the proportions of biological assessment sites in each status category of 

aquatic life use support.  The proportion of stream sites that were assessed as impaired 

based on data from the 1994-1998 sampling period was smaller (31%) than the 

proportion of impaired sites (47%) sampled during the 1999-2001 period.  Differences in 

sampling objectives are a likely cause.  The sampling emphasis from 1994-1998 was 

mostly reference sites for development of biological indicators and reference conditions.  

From 1999-2001, the sampling emphasis changed to mostly test sites suspected of having 

physical habitat and/or water quality problems. 

19.5%
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23.5%
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Figure 6-1.  Status of stream aquatic life use support assessed at wadeable river and 

stream bioassessment sites: 1994-2001. 
 

One unresolved issue is the length of stream that can be represented by results from a 

single bioassessment site.  In Iowa's water body reporting system, segment boundaries 

are typically defined by confluences with tributary streams or changes in designated uses.  

Consequently, stream segments are not a uniform length.  They range from less than one 

mile to more than twenty miles.  From 1994-2002, the average 305(b) segment length 

assessed using biological assemblage data was approximately 12 miles (19 km).  Often, 

entire segments are assessed based upon data from a single bioassessment site, which is 
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typically a length of stream from 150-350 meters.  This means the average bioassessment 

site would encompass approximately 1.2% of the length of an average 305(b) assessment 

segment.  In Iowa, it is not clear whether this level of sample representation is adequate. 

 

In Missouri, benthic macroinvertebrate metric data from multiple sites (sample reaches) 

located on reference stream segments were analyzed to determine the amount of between-

reach variation, and the level of impairment discriminatory power gained by sampling 

multiple reaches compared to sampling a single reach (Rabeni et al. 1999).  Variation 

between sample reaches on the same segment was small (coefficient of variation [CV] 

typically <10%), and there was only a modest gain in the ability to detect impairment 

from sampling one or two additional reaches (<15%).   In terms of representation and 

cost effectiveness, the authors favored a single carefully selected and sampled reach to 

multiple sample reaches.  A sample site for every 4-5 stream miles is currently preferred 

for bioassessment purposes (personal communication, Randy Sarver, MDNR). 

 

Where multiple sites in the same stream segment were sampled in Iowa, varying results 

have been found.  For example, there were only small variations in BMIBI and FIBI 

scores (CV=4% and 11%, respectively) among six Maple River sites (Sac County) 

spanning a 37-mile segment (IDNR 2001d).  The riparian corridor, instream physical 

habitat and water quality characteristics of the Maple River are relatively homogenous.  

All sites received the same aquatic life use assessment of fully supporting / threatened.  

By comparison, BMIBI and FIBI scores were more variable (CV=13% and 21%, 

respectively) among nine sites sampled along 28 miles of the South Skunk River in Story 

and Hamilton counties (see Figure 6-5).   Riparian land use, physical habitat and water 

quality conditions were more variable along the South Skunk River compared to the 

Maple River.  Site assessments of aquatic life use status ranged from not supporting to 

fully supporting.  In the Maple River, where physical habitat and stream morphology are 

relatively uniform, a single bioassessment site seemed adequate to represent a relatively 

long segment of stream that is comparable to the average 305(b) reporting unit.  In the 

South Skunk River, that was clearly not the case.   
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Because of the variation in stream conditions, both locally and regionally, it would be 

difficult to define a standard segment length to which site-specific bioassessment can be 

extrapolated.  Establishment of guidelines and procedures for choosing representative 

sampling reaches and determining the limits of representation can help, however, some 

degree of professional judgment applied on a case-by-case basis still may be required.  

 

6.2 Problem Investigation 
 

Stream bioassessment is used to investigate a variety of water quality impacts including 

animal waste runoff, chemical spills, and wastewater discharges.  It has also been used as 

a tool to evaluate the environmental risks associated with hazardous waste.  The 

information gained from bioassessment helps IDNR managers evaluate the severity of 

environmental impacts, need for management or regulatory actions, and recovery from 

pollution events.  Bioassessment information is also used to establish benchmarks against 

which the effectiveness of control measures or mitigation is evaluated. 

 

 Wastewater Impacts 

 

The bioassessment framework is useful for evaluating water quality impacts from 

wastewater discharges.  Typically, an upstream (control) - downstream (impacted) 

sampling approach is used to isolate wastewater discharge effects.  Ideally, the upstream 

(control) site will have similar physical habitat characteristics as the downstream 

(impacted) site, which makes it easier to discern stream biological differences that are 

attributable to the wastewater discharge.  A comparison of control site and impacted site 

biological conditions to regional reference conditions is done to place bioassessment 

results within the context of reference expectations, and to evaluate the magnitude of 

impacts from other sources in the watershed. 

 

Bioassessment results from Fourmile Creek are used to illustrate how the upstream-

downstream wastewater-bracketing concept is applied (Figure 6-2).  Fourmile Creek 

receives wastewater from the City of Ankeny's WWTP.  The BMIBI score below the 
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WWTP outfall was 52 (fair) compared to a score of 72 (good) upstream from the outfall.  

The downstream BMIBI score is below the 25th percentile of regional reference sites, 

while the upstream BMIBI score is above the 25th percentile, thus suggesting a slight 

impairment of biological condition.   

 

The physical habitat characteristics of both sites was very similar.  Several metrics of the 

BMIBI that are sensitive to organic enrichment impacts showed an apparent decline in 

response to the wastewater discharge.  The observed metric responses are indicative of a 

shift in benthic macroinvertebrate species composition and relative abundance that is 

consistent with increased inputs of fine particulate organic matter and oxygen-demanding 

waste products.   
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Figure 6-2.  Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) scores from 

Fourmile Creek, Polk County.  Sampling locations were upstream and 
downstream of the outfall for the Ankeny Wastewater Treatment Plant.  The 
red line depicts the 25th percentile of BMIBI scores from ecoregional 
reference sites. 
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 Fish Kills 
 
A follow-up investigation of twenty stream fish kill events (Figure 6-3) was conducted 

from 1999-2001 (Wilton 2002).  The primary goals of the project were to assess the 

biological condition status and recovery of fish populations in fish kill streams.  The 

investigation encompassed a wide range in the lengths of time between the fish kill event 

and follow-up sampling (i.e., 5-60 months).  

 

Follow-up sampling results were compared with data from fish kill reports and stream 

ecoregion reference sites.  Data analysis focused on three aspects of the fish assemblage: 

abundance, biocondition (FIBI), and species composition.  Levels of fish abundance and 

biocondition varied greatly among the follow-up stream sites.  Fish abundance ranged 

from very low (17 fish/500ft.) to very high (2,506 fish/500ft.).  FIBI scores ranged from 2 

(very poor) to 73 (excellent).  Levels of fish abundance and/or fish assemblage condition 

were lower than reference expectations in 52% of the follow-up stream segments (Table 

6-2).   

 

Several follow-up sample sites were missing fish species that were observed during the 

fish kill investigation.  Alternatively, a number of follow-up sample sites also contained 

fish species that were not reported as part of the fish kill.  Differences in sampling 

methods and data limitations make it difficult to form conclusions about the recovery of 

individual fish species.  Sample results generally demonstrated that streams affected by 

fish kills are capable of significant recovery of fish abundance and composition within 

several months to a few years.  Residual impacts, however, may exist for longer periods 

of time depending on the magnitude of the event and other factors affecting fish species 

re-colonization. 
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6.3 Status and Trend Monitoring 
 

Probabilistic Stream Survey 

 

In 2002, IDNR initiated a statistical survey to objectively measure the status and trends of 

Iowa's perennial rivers and streams.  The survey is partially supported by the U.S. EPA’s 

Regional Environmental Monitoring and Assessment Program (REMAP).  In accordance 

with REMAP specifications, a stratified-random design is being used to obtain an 

unbiased sample population from which accurate statements about the status of Iowa’s 

perennial streams can be extrapolated.  The survey measures several indicators of stream 

ecosystem health including biological assemblages; fish, sediment, and water 

contaminant levels; physical habitat structure; stream metabolism.  

 

One of the primary questions the survey is attempting to answer is what is the true 

condition of biological assemblages inhabiting Iowa's perennial streams.  From 1994-

2001, sampling was done at targeted sites mostly for biological indicator and reference 

condition development.  A smaller amount of sampling was done for problem 

investigation and TMDL watershed assessment purposes (see Figure 3-5).   

 

Data from the first two years of the REMAP random (probabilistic) sampling project can 

be used to evaluate differences between random and non-random sample populations.   

The solid red and black curvilinear lines in Figure 6-4 represent the Cumulative 

Distribution Functions (CDF) of the random and non-random BMIBI sample data 

respectively.  At any given point along a CDF, the proportion of the sample population 

having a BMIBI score less than or equal to the level corresponding to that point can be 

obtained by extending a horizontal line to the y-axis.  For example, in Figure 6-4 the 50th 

percentile (median) BMIBI value from the random sample is 47 (fair) and the median 

value from the non-random sample population is 58 (good).   
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Figure 6-4.  Cumulative distribution functions (CDF) of Benthic Macroinvertebrate Index 

of Biological Integrity (BMIBI) scores from 2002-2003 REMAP random 
sampling (median score = 47) and 1994-2002 non-random sampling (median 
score = 58).  (Note: non-random CDF represents cumulative % sample sites; 
random CDF represents cumulative % perennial stream miles.) 

 

 

One of the main benefits of the REMAP sample design is that each sample site has a 

known probability of being selected and represents a known proportion of the entire 

population.  By combining each data value with its sample weight or probability factor, 

survey results can be extrapolated to the entire population of perennial streams.  

Furthermore, the statistical validity of the sample design allows confidence bounds to be 

obtained for the random sample CDF.  The confidence bounds, depicted in Figure 6-4 as 

dashed red lines, make it possible to make statements about the entire population of 

perennial streams with statistical certainty.  For example, there is 95% certainty the 

percentage of perennial stream miles in Iowa having “poor” benthic macroinvertebrate 

assemblage condition (i.e., BMIBI < 30) during the 2002 and 2003 sampling period is 
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24.9% + 10.5%.   By comparison, only 5% of the non-random sites from 1994-2002 had 

BMIBI scores that were in the poor range. 

 

Except for the tail ends, the fact that the non-random CDF remains outside and to the 

right of the 95% confidence bounds surrounding the random CDF strongly suggests the 

two sample populations differ with respect to BMIBI levels.  The 2002-2003 random 

sample data indicate the condition of benthic macroinvertebrate assemblages is 

significantly worse than indicated by the non-random data from 1994-2002.  This 

preliminary analysis emphasizes the value of conducting probabilistic sampling for 

obtaining accurate estimates of aquatic resource status.  Other comparisons of aquatic 

resource condition estimates derived from probability-based sample data versus non-

statistically derived sample data (Paulsen et al. 1998; Hughes et al. 2000) have found 

substantial disagreement and underestimated levels of impairment based upon non-

statistical sample designs. 

 

 Reference Site Sampling 

 

Reference sites are least disturbed stream habitats that serve as contemporary benchmarks 

of stream quality.  Currently, reference sites are being sampled on a 5-year rotational 

cycle in order to keep the reference database current.  One trend monitoring approach that 

might have merit involves comparing biological index scores from different sample 

cycles to see if a change in reference biological condition has occurred.  Hopefully, 

stream biological condition will improve over time as land use practices and pollution 

control measures lead to improved stream conditions.  Declining levels in biotic index 

levels at reference stream sites might be considered a warning sign that stream conditions 

are worsening.  So far, BMIBI scores and FIBI scores from reference sites sampled in 

1994-1996 have been compared to index scores sampled from the same sites in 1999-

2001. 

 

Figure 6-4 shows the ranges of FIBI scores from 33 reference sites sampled in 1994-1996 

and again in 1999-2001.  Twenty-three sites (70%) had a higher FIBI score in the 1994-
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1996 period compared to the score from 1999-2001.  The average difference of 3.5 points 

was close, but not quite significant at the 95% confidence level (paired t-test; p=0.08).  

The same statistical test was performed on BMBI scores from 1994-1996 versus 1999-

2001.  No significant trend in BMIBI levels was found.  More statistical tests will be 

performed as the rotational sampling schedule progresses and more reference site data 

become available for trend analysis. 
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Figure 6-5.  Box and whisker plot ranges of FIBI scores from 33 reference stream sites 
each sampled during two time periods. 

 

 

6.4 Watershed Assessment and TMDL Development 
 

Bioassessment is an integral part of stream watershed assessments that support TMDL 

development.  A recently completed study (IDNR 2001d) documented a combined 

approach utilizing stream bioassessment and GIS-based watershed assessment methods to 

evaluate the extent, causes, and sources of aquatic life use impairment.  
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One of three watersheds included in the study was the upper South Skunk River 

Watershed.  Levels of stream biological condition were highly variable across the 

watershed (Figure 6-5).  Benthic macroinvertebrate index (BMIBI) scores ranged from 42 

(fair) – 82 (excellent).  Fish index (FIBI) scores ranged from 19 (poor) - 61 (good).  

Differences in biological condition were associated with differences in land cover/land 

use and stream habitat conditions.  Localized biological impacts from point source 

discharges were also documented.   

 

The highest level of biological condition in the watershed was found at a sampling site 

(SS4) in the Skunk River Greenbelt area between Story City and Ames.  Stream habitat 

quality at this site was rated as “good.”   The greenbelt provides a riparian buffer that 

consists mostly of woody vegetation.  The segment in which this site is located has the 

largest amount of forest cover (11%) in the watershed.  Most of the forestland occurs on 

the steep valley slopes and the floodplain of the South Skunk River. 

 

The primary causes of aquatic life impairment identified in the South Skunk River 

Watershed are organic enrichment and physical habitat alterations.  Agriculture and 

municipal wastewater discharges were identified as the primary sources of impairment.  

Agricultural practices that appear to contribute to aquatic life impairment include 

channelization, hydrologic modification, and streamside livestock grazing.  Land 

application of animal waste from confined animal feeding operations (CAFOs) is a 

potential source of stream nutrient and organic enrichment that needs further evaluation. 

 

Stream bioassessment and GIS watershed assessment are complementary tools that 

enable resource managers to move beyond site-specific or program-specific solutions to 

holistic management of Iowa's stream resources.   The tools will become even more 

effective as experience is gained from developing, implementing, and evaluating TMDLs 

and watershed plans.  
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Figure  6-6.  Stream biological condition and aquatic life use support status in the upper 

South Skunk River Watershed. 
 

 South Skunk River  
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8 Abbreviations and Acronyms  

40 Central Irregular Plains 
40a Loess Flats and Till Plains 
47 Western Corn Belt Plains 
47a Northwest Iowa Loess Prairies 
47b Des Moines Lobe 
47c Iowan Surface 
47d Missouri Alluvial Plain 
47e Steeply Rolling Loess Prairies 
47f Rolling Loess Prairies 
47m Western Loess Hills 
52 Driftless Area 
52b Paleozoic Plateau/Coulee Section 
72 Central Interior Lowland  
72d Upper Mississippi Alluvial Plain 
ALUS aquatic life use support 
AOCV Analysis of Covariance 
AOV Analysis of Variance 
avg. average 
B(LR) Limited Resource Warm Water 
B(WW) Significant Resource Warm Water 
BIC Biological Impairment Criteria 
BINDX Biotic Index 
bldr. boulder 
BMIBI Benthic Macroinvertebrate Index of Biotic Integrity 
Bsim between-class similarity 
C Celsius 
CAFOs confined animal feeding operations 
CCA Canonical Correspondance Analysis 
cfs cubic feet per second 
Chrnmd. Chironomidae 
cm centimeter 
coll. collector 
CS Classification Strength 
CV Coefficient of Variation 
CWA Clean Water Act 
DC direct current 
DCA Detrended Correspondance Analysis 
diss. dissolved 
DML Des Moines Lobe 
dom. dominant 
dpth depth 
Drn. drainage 
Ecor. ecoregion 
EMAP Environmental Monitoring and Assessment Program 
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embedd. or embd. embedded 
Ephmr. Ephemeroptera 
EPT Ephemeroptera, Plecoptera, and Trichoptera 
ffg functional feeding group 
FIBI Fish Index of Biotic Integrity 
fltrs. filterers 
FPOM fine particulate organic matter 
ft. feet 
GIS Geographic Information System 
gthrs. gatherers 
H' Simpson's diversity index 
herb. veg. herbaceous vegetation 
HUC hydrologic unit code 
hvy. heavy 
IAC Iowa Administrative Code 
IBI Index of Biotic Integrity 
ICFWRU Iowa Cooperative Fisheries and Wildlife Research Unit 
IDNR Iowa Department of Natural Resources 
IRIS Iowa River Information System 
IS Iowan Surface 
LDA Log10 stream drainage area 
LFTP Loess Flats and Till Plains 
lght light 
M or MH multi-habitat 
max. maximum 
mg/L milligrams per liter 
MHEPT multi-habitat EPT richness 
MHSTR multi-habitat sensitive taxa richness 
MHTR multi-habitat taxa richness 
mi. mile 
Mo. Missouri 
mod. moderate 
Msp. Mississippi 
NPDES National Pollutant Discharge Elimination System 
ntu nephelometric turbidity units 
NWILP Northwest Iowa Loess Prairies 
P3DOM percent abundance of 3-dominant taxa 
PCHR or %CHR percent abundance of Chironomidae taxa 
PDFFG percent abundance of dominant functional feeding group 
PEPHM percent abundance of Ephemeroptera taxa 
PEPT percent abundance of EPT taxa 
PP Paleozoic Plateau 
PSCR percent abundance of scraper organisms 
pts. points 
RDA Redundancy Analysis 
rip. veg. riparian vegetation 
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RLP Rolling Loess Prairies 
S or SH standard-habitat 
scrprs. scrapers 
SHEPT standard-habitat EPT richness 
SHTR standard-habitat taxa richness 
SIDP Southern Iowa Drift Plain 
sq. square 
SRLP Steeply Rolling Loess Prairies 
str. bnk. stream bank 
substr. substrate 
susp. suspended 
TMDL Total Maximum Daily Load 
tot. total 
Tripchop. Trichoptera 
U.S. EPA U.S. Environmental Protection Agency 
UHL University of Iowa Hygienic Laboratory 
veg. vegetation 
WCBP Western Corn Belt Plains 
wdth width 
wdy.dbr. woody debris 
Wsim within-class similarity 
WWTP Waste Water Treatment Plant 
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9 Glossary  

 (From U.S. EPA 1996, U.S. EPA 1998, U.S. EPA and Council of State Governments 2003) 

 

Analysis of variance (AOV):  a general statistical method for comparing the mean 

response to different treatments using the ratio of among-group to between-group 

variance.  The method has also been applied to estimating precision and quantifying 

sources of variance.   

 

Aquatic assemblage:  an association of interacting populations of organisms in a given 

waterbody, for example, fish assemblage or a benthic macroinvertebrate assemblage. 

 

Aquatic community:  an association of interacting assemblages in a given waterbody, the 

biotic component of an ecosystem. 

 

Aquatic life use:  a beneficial use designation in which the waterbody provides suitable 

habitat for survival and reproduction of desirable fish, shellfish, and other aquatic 

organisms; classifications specified in state water quality standards relating to the 

level of protection afforded to the resident biological community by the state agency. 

 

Benthic macroinvertebrates:  animals without backbones, living in or on the sediments, 

of a size large enough to be seen by the unaided eye and which can be retained by a 

U.S. Standard No. 30 sieve.  Also referred to as benthos, infauna, or macrobenthos. 

 

Assemblage structure:  the make-up or composition of the taxonomic grouping such as 

fish, algae, or macroinvertebrates relating primarily to the kinds and number of 

organisms in the group.   

 

Biological assessment:  an evaluation of the condition of a waterbody that uses 

biological surveys and other direct measurements of the resident biota in surface 

waters.
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Biological criteria or biocriteria:  numeric values or narrative expressions that describe 

the reference biological condition of aquatic communities inhabiting waters that have 

been given a designated aquatic life use.   

 

Biological indicator or bioindicator:  an organism, species, assemblage, or community 

characteristic of a particular habitat, or indicative of a particular set of environmental 

conditions. 

 

Biological integrity:  the ability of an aquatic ecosystem to support and maintain a 

balanced, adaptive community of organisms having a species composition, diversity, 

and functional organization comparable to that of natural habitats within a region. 

 

Biological monitoring or biomonitoring:  use of a biological entity as a detector and its 

response as a measure to determine environmental conditions.  Ambient biological 

surveys and toxicity tests are common biological monitoring methods. 

 

Biological survey or biosurvey:  collecting, processing, and analyzing a representative 

portion of the resident biotic community to determine its structural and/or functional 

characteristics.   

 

Biota:  plants, animals and other living resources of a region. 

 

Canonical correspondence analysis (CCA):  a non-linear multi-variate ordination 

procedure. 

 

Clean Water Act (CWA):  an act passed by the U.S. Congress to control water pollution 

(formerly referred to as the Federal Water Pollution Control Act of 1972).  Public 

Law 92-500, as amended 33 U.S.C. 1251 et seq. 

 



Biological Assessment of Iowa’s Wadeable Streams Glossary 

9-3 

Clean Water Act 303(d):  This section of the Act requires states, territories, and 

authorized tribes to develop lists of impaired waters for which water quality standards 

are not being met, even after point sources of pollution have installed the minimum 

required levels of pollution control technology. 

 

Clean Water Act 305(b):  biennial reporting requires description of the quality of the 

Nation’s surface waters, evaluation of progress made in maintaining and restoring 

water quality, and description of the extent of remaining problems. 

 

Designated uses:  those uses specified in water quality standards for each waterbody or 

segment whether or not they are being attained. 

 

Ecological integrity:  the condition of an unimpaired ecosystem as measured by 

combined chemical, physical (including physical habitat), and biological attributes.  

Ecosystems have integrity when they have their native components (plants, animals 

and other organisms) and processes (such as growth and reproduction) intact. 

 

Ecoregions:  a relatively homogenous area defined by similarity of climate, landform, 

soil, potential natural vegetation, hydrology, or other ecologically significant 

variables. 

 

Habitat:  a place where the physical and biological elements of ecosystems provide a 

suitable environment including the food, cover, and space resources needed for plant 

and animal livelihood. 

 

Index of biological/biotic integrity (IBI):  an integrative expression of site condition 

across multiple metrics.  An index of biological integrity is often composed of at least 

seven metrics. 
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Metric:  a calculated term of renumeration representing some aspect of biological 

assemblage structure, function, or other measurable aspect and is a characteristic of 

the biota that changes in some predictable way with increased human influence.  

 

Multimetric index:  an index that combines indicators, or metrics, into a single index 

value.  Each metric is tested and calibrated to a scale and transformed into a unitless 

score prior to being aggregated into a multimetric index.  Both the index and metrics 

are useful in assessing and diagnosing ecological condition. 

 

Multivariate analysis:  statistical methods (e.g., ordination, discriminant analysis) for 

analyzing physical and biological community data using multiple variables. 

 

Narrative biocriteria:  written statements describing the structure and function of aquatic 

communities in a waterbody necessary to protect a designated aquatic life use. 

 

Nonpoint source pollution:  pollution that occurs when rainfall, snowmelt, or irrigation 

water runs over land or through the ground, picks up pollutants, and deposits them 

into rivers, lakes, and coastal waters or introduces them into ground water. 

 

Numeric biocrteria:  specific quantitative measures of the structure and function of 

aquatic communities in a waterbody necessary to protect a designated aquatic life use. 

 

Point source:  an origin of pollutant discharge that is known and specific, usually thought 

of as effluent from the end of a pipe. 

 

Reference condition:  the condition that approximates natural, un-impacted conditions 

(biological, chemical, physical, etc.) for a waterbody.  Reference condition 

(Biological Integrity) is best determined by collecting measurements at a number of 

sites in a similar waterbody class or region under undisturbed or minimally disturbed 

conditions (by human activity), if they exist.  Since undisturbed or minimally 

disturbed conditions may be difficult or impossible to find, least disturbed conditions, 
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combined with historical information, models or other methods may be used to 

approximate reference condition as long as the departure from natural or ideal is 

understood.  Reference condition is used as a benchmark to determine how much 

other water bodies depart from this condition due to human disturbance. 

 

Least Disturbed Condition:  the best available existing conditions with regard to 

physical, chemical, and biological characteristics or attributes of a waterbody within a 

class or region.  These waters have the least amount of human disturbance in 

comparison to others within the waterbody class, region or basin.  Least disturbed 

conditions can be readily found, but may depart significantly from natural, 

undisturbed conditions or minimally disturbed conditions.  Least disturbed condition 

may change significantly over time as human disturbances change. 

 

Minimally Disturbed Condition:  the physical, chemical, and biological conditions of 

a waterbody with very limited, or minimal, human disturbance in comparison to 

others within the waterbody class or region.  Minimally disturbed conditions can 

change in time in response to natural processes. 

 

Reference site:  a specific locality on a waterbody that is undisturbed or minimally 

disturbed and is representative of the expected ecological integrity of other localities 

on the same waterbody or nearby waterbodies. 

 

Regional Environmental Monitoring and Assessment Program (REMAP):  the U.S. 

EPA program initiated to assess the applicability of the EMAP approach to answer 

questions about ecological conditions at regional and local scales.  REMAP conducts 

projects at smaller geographic scales and in shorter time frames than the national 

EMAP program. 

  

Taxa:  a grouping of organisms given a formal taxonomic name such as species, genus, 

family, etc. 
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Test site:  a location on a waterbody of which the condition is unknown and often 

suspected to be adversely affected by anthropogenic influence. 

 
Total Maximum Daily Load (TMDL):  calculation of the maximum amount of a 

pollutant a waterbody can receive and still meet water quality standards and an 

allocation of that amount to the pollutant's sources. 

 

Water Quality Standards:  a law or regulation that consists of the beneficial designated 

use or uses of a waterbody, the narrative or numerical water quality criteria (including 

biocriteria) that are necessary to protect the use or uses of that particular waterbody, 

and an antidegradation statement. 
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Appendix 1.  Example Calculations of the Benthic Macroinvertebrate Index of Biotic 
Integrity (BMIBI). 

 
 
Appendix 1.1.  BMIBI Metric Scoring Formulas. 
 

# Metric Abbreviation 
Stream 

Drainage Area 
Criterion1 

Metric Scoring Formula 

1 Multi-habitat taxa 
richness MHTR LDA<1.85 

LDA>1.85 
(#MH-taxa/(12 + 21.7*LDA))*10 
(#MH-taxa/52)*10 

2 Standardized-habitat 
taxa richness SHTR LDA<2.06 

LDA>2.06 
(#SH-taxa/(4 + 9.08*LDA))*10 
(#SH-taxa/22.7)*10 

3 Multi-habitat EPT 
richness MHEPT LDA<2.11 

LDA>2.11 
(#MH-EPT taxa/(6 + 9.93*LDA))*10 
(#MH-EPT taxa/27)*10 

4 Standardized-habitat 
EPT taxa richness SHEPT LDA<1.93 

LDA>1.93 
(#SH-EPT taxa/(2.4 + 6.37*LDA))*10 
(#SH-EPT taxa/14.7)*10 

5 Multi-habitat sensitive 
taxa richness MHSTR LDA<1.85 

LDA>1.85 
(#MH-snstv.taxa/(2.4 + 4.66*LDA))*10 
(#MH-snstv.taxa/11)*10 

Metrics 6-12 are calculated using standardized-habitat sampling data only 

6 % abundance 3-
dominant taxa P3DOM LDA<1.85 

LDA>1.85 
((100 - %3dom.taxa)/(100-(95-31.35*LDA))*10
((100-%3domsp.)/63)*10 

7 Biotic index BINDX All streams ((7-Bindx)/2.7)*10 

8 % abundance EPT taxa PEPT All streams (%EPT/95.5)*10 

9 % abundance 
Chironomidae  PCHR All streams (100-%Chrnmd.)/98.98)*10 

10 % abundance 
Ephemeroptera taxa PEPHM All streams (%Ephmr./78.2)*10 

11 % abundance scraper 
organisms PSCR All streams (%scrpr./44.7)*10 

12 
% abundance dominant 
functional feeding 
group

PDFFG All streams ((100-%dom.ffg.)/60)*10 

1LDA = Log10 Stream Drainage Area (square miles) 
 
Benthic Macroinvertebrate Index of Biotic Integrity (BMIBI) Computation Steps: 
1) Obtain benthic macroinvertebrate taxa classifications and tolerance values from Appendix A1-1. 
2) Calculate metrics (refer to metric descriptions in Section 5.1.3 and instructions in Appendix A1-4). 
3) Compute the metric score for each of the twelve BMIBI metrics; apply the appropriate metric formula depending on 
the stream watershed drainage area.  Each metric scoring range is continuous from 0 - 10 (round metric scores to one 
decimal place); minimum score = 0.0, maximum (optimum) score = 10.0.  In computing metric scores, values less than 
zero or values exceeding ten may occur.  Metric scores less than zero are rounded up to zero; metric scores greater than 
ten are rounded down to ten. 
4) Calculate BMIBI score.  BMIBI = ((Sum of metric scores 1 - 12)*10)/12.  Round BMIBI score to nearest integer; 
possible scoring range is 0 - 100. 
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Appendix 1.2  Benthic Macroinvertebrate Taxa and Data Metric Classifications (2001). 
(Note: taxonomic classifications are periodically reviewed.  Contact IDNR 
stream bioassessment unit for updated information.) 

Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

Annelida
 Hirudinea adult 7.5  
     immature 7.5  
  Pharyngobdellida  
   Erpobdellidae adult 8.0 pa  
     immature 8.0 pa  
    Dina dubia adult 8.0 pa  

    D. parva adult 8.0 pa  
     immature 8.0 pa  
    Erpobdella punctata adult 7.8 pa  
    Helobdella stagnalis adult 6.7 pa  
    H. triserialis adult 8.9 pa  
    Mooreobdella fervida adult 7.8 pa  
    M. melanostoma adult 7.8 pa  
    M. microstoma adult 7.8 pa  
    M. tetragon adult 7.8 pa  

    Nephelopsis obscura adult 8.0 pa  
  Rhynchobdellida  

   Glossiphoniidae adult 7.0 pr  
     immature 7.0 pr  
    Batracobdella picta adult  

    Glossiphonia complanata adult 7.0 pr  
    Placobdella  adult 7.0 pr  
     immature 7.0 pr  
    P. montifera adult 6.0 pr  
    P. multilineata adult 7.0 pr  
    P. multilineata/papillifera adult 7.0 pr  
    P. nuchalis adult 7.0 pr  

    P. ornata adult 7.0 pr  
    P. papillifera adult 9.0 pr  

    P. parasitica adult 6.6 pr  
 Oligochaeta adult 8.5 co x 

     immature 8.5 co x 
  Haplotaxida adult 8.5 co x 
   Lumbricidae adult 8.0 co x 

    Eisenella tetredra adult 8.0 co x 
   Naididae adult 7.6 co x 
   Tubificidae adult 10.0 co x 
     immature 10.0 co x 
Arthropoda  
 Crustacea  
  Amphipoda  
   Gammaridae adult 4.0  

     immature 4.0  
    Gammarus adult 4.0  

    G. pseudolimnaeus adult 4.0 co x 
   Talitridae 8.0 co x 
    Hyalella azteca adult 8.0 co x 
  Decapoda immature  
   Cambaridae immature 6.0 co x 

    Cambarus diogenes adult 6.0 co x 
    Orconectes  adult 6.0 co x 

     immature 6.0 co x 
    O. immunis adult 6.0 co x 
    O. rusticus adult 6.0 co x 

    O. virilis adult 6.0 co x 
     immature 6.0 co x 
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Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

  Isopoda        
   Asellidae  

    Caecidotea  adult 8.0 co x 
    C. intermedia adult 8.0 co x 

    Lirceus adult 8.0 co x 
 Hydracarina adult 5.7  

     larva  
  Hydrachnida adult  

   Hydrachnidae adult  
 Insecta   
  Coleoptera adult  

     larva  
   Carabidae adult 4.0 pr  
   Curculionidae adult he,sh  
    Listronotus adult unk  
    Lixus adult unk  

   Dryopidae  
    Helichus  adult 5.0 sc,co x  

     larva 5.0 sh  
    H. fastigiatus adult 5.5 sc,co x  
    H. lithophilus adult 5.0 sc,co x  

    H. striatus adult 5.0 sc,co x  
   Dytiscidae adult 5.0 pr  

     larva 5.0 pr  
    Acilius sylvanus larva pr  
    Agabetes acuductus adult 5.0 pr  
    Agabus  adult 5.0 pr  

     larva 5.0 pr  
    Agabus/Ilybius larva 5.0 pr  
    A. gagetes larva 5.0 pr  
    A. semivittatus adult 5.0 pr  
    A. seriatus adult 5.0 pr  
    Celina adult 5.0 pr  
    Colymbetes adult 5.0 pr  
    Copelatus adult pr  
    Copelatus chevrolati adult pr  
    Copelatus glyphicus adult 9.1 pr  
    Coptotomus adult 9.0 pr  
    C. loticus adult 9.0 pr  
    Dytiscus larva 3.7 pr  
    Heterosternuta wichami adult pr  
    Hydaticus larva 5.0 pr  
    Hydroporus adult 8.9 pr  
    H. dichorous adult 8.9 pr  
    Hydrovatus adult 3.7 pr  
    H. pustulatus adult 3.7 pr  
    Hygrotus dissimilis adult 1.9 pr  x
    H. sayi adult 1.9 pr  x
    Ilybius larva 3.7 pr  
    I. fraterculus adult 3.7 pr  

    Laccophilus  adult 5.0 pr  
     larva 5.0 pr  
    L. fasciatus adult 5.0 pr  
    L. maculosus adult 5.0 pr  
     larva 5.0 pr  

    L. proximus adult 5.0 pr  
    L. undatus adult 5.0 pr  
    Liodessus larva pr  

    L. affinis adult pr  
    L. affinis/obsurellus adult pr  
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Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

    L. flavicollis adult  pr     
    Lioporeus triangularis adult pr  
    Neoporus adult pr  
    N. dimidiatus adult pr  
    N. dimidiatus/solitarius adult pr  
    N. solitarius adult pr  
    N. undulatus adult pr  
    N. vitiosus adult pr  
    N. vittatus adult pr  
    Oreodytes larva pr  
    Sanfilippodytes adult pr  
    Stictiotarsus griseostriatus adult pr  

    Uvarus  adult 4.6 pr  
    U. lacustris adult 4.6 pr  
   Elmidae adult 4.0 co,ga,sc  

     larva 4.0 co,ga,sc  
    Ancyronyx variegata adult 6.0 co,sc x 

     larva 6.0 co,sc  
    Dubiraphia  adult 6.0 co,sc  
     larva 6.0 co,sc  

    D. bivattata larva 8.0 co,sc  
     adult 8.0 co,sc  

    D. minima adult 6.0 co,sc  
     larva 6.0 co,sc  

    D. quadrinotata adult 6.0 co,sc  
    D. vittata adult 6.0 co,sc  

    Macronychus glabratus adult 4.0 co,de x 
     larva 4.0 co,de x 
    Optioservus  adult 4.0 sc,co x  
     larva 4.0 sc,co x  
    O. fastiditus adult 4.0 sc,co x  
     larva 4.0 sc,co x  
    Stenelmis  adult 5.0 sc,co x  
     larva 5.0 sc,co x  

    S. bicarinata adult 5.0 sc,co x  
    S. cheryl adult 5.0 sc,co x  
    S. crenata adult 5.0 sc,co x  
    S. decorata adult 5.0 sc,co x  

    S. grossa adult 5.0 sc,co x  
     larva 5.0 sc,co x  

    S. sexlineata adult 5.0 sc,co x  
   Gyrinidae pr  

    Dineutus  adult 4.0 pr  
     larva 4.0 pr  

    D. assimilis adult 4.0 pr  
    Gyrinus  adult 6.3 pr  

     larva 6.3 pr  
    G. aeneolus adult 6.3 pr  
    G. marginellus adult 6.3  

   Haliplidae he  
    Haliplus larva 5.0 mp,sh  
    H. borealis adult 5.0 mp,sh  
    H. connexus adult 5.0 mp,sh  
    H. immaculicollis adult 5.0 mp,sh  
    H. triopsis adult 5.0 mp,sh  
    Peltodytes  adult 5.0 mp,sh,pr  
     larva 5.0 mp,sh,pr  
    P. duodecimpuntatus adult 5.0 mp,sh,pr  
     larva 5.0 mp,sh,pr  

    P. edentulus adult 5.0 mp,sh,pr  



Biological Assessment of Iowa’s Wadeable Streams BMIBI Calculation 

A1-5 

Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

    P. tortulosus adult 5.0 mp,sh,pr     
   Hydrochidae  
    Hydrochus adult 4.6 sh,he  
    H. scabratus adult 4.6 sh,he  
    H. subcupreus adult 4.6 sh,he  
   Heteroceridae adult  
     larva  

   Hydrophilidae adult 5.0 co,ga x 
     larva 5.0 pr  
    Anacaena adult  
    A. lutescens adult  
    Berosus adult 5.0 he,co,mp,sh  
    B. peregrinus adult 5.0  
    Cymbiodyta adult 5.5  
    C. chamberlaini adult 5.5  
    C. toddi adult 5.5  
    C. vindicata adult 5.5  

    Enochrus  adult 8.5 mp  
     larva 8.5 mp  
    E. diffusus/hamiltoni adult 8.5 mp  
    E. ochraceus  adult 8.5 mp  
    E. pygmaeus adult 8.5 mp  
    Helophorus  adult 5.0 sh, he  
    H. lacustris adult 5.0 sh, he  
    Hydrobius larva 5.0 pr  
     adult 5.0  
    Hydrochara adult  
    H. soror adult  
    Hydrophilus adult 4.6 mp,co  
     larva 4.6 pr  

    Laccobius  adult 5.0 mp  
    L. agilis adult 5.0 mp  
    L. spangleri adult 5.0 mp  
    Paracymus adult 7.3  
    P. subcupreus adult 7.3  

    Sperchopsis tessellatus adult 6.5 unk  
     larva 6.5 unk  
    Tropisternus  adult 9.8 co,mp  
     larva 9.8 pr  

    T. lateralis adult 9.8 co,mp  
    T. natator adult 9.8 co,mp  
   Lampyridae larva  
   Noteridae adult  
     larva  
   Psephenidae  
    Ectopria sp.1 larva 5.0 sc x  
   Ptilodactylidae larva 5.0 sh,de,he  
   Scirtidae  
    Cyphon adult 5.0 sc,co,ga,sh,mp,he  
     larva 5.0  
    Scirtes larva 5.0 sh  
   Staphylinidae adult  
  Collembola adult co,ga x 

  Diptera adult  
     immature  

      larva  
     pupa  

   Athericidae 2.0 pr  x
    Atherix  larva 2.0 pr  x
    A. variegata larva 2.0 pr  x
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Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

   Ceratopogonidae larva 6.0 pr,co,ga     
    Alluaudomyia larva 6.0 pr  
    Atrichopogon larva 6.8 co,ga x 

    Bezzia  larva 6.0 pr  
    Bezzia / Palpomyia larva 6.0 pr  
    Ceratopogon larva 6.0  
    Forcipomyia larva 6.0  

    Palpomyia  larva 6.0 pr,co,ga  
    Probezzia larva 6.0 pr  
    Sphaeromias larva 6.0 pr,co,ga  

   Chironomidae larva 6.0 co,pr x 
     pupa 6.0  

    Robackia demeijerei larva 4.3 co,ga x 
   Culicidae larva 8.0 co,fi,ga x 
     pupa 8.0  
    Aedes so larva co,ga, fi x 
    Anopheles larva 9.1 fi x  
     pupa  
    Culex larva 10.0 fi x  
   Cyclorrhaphous-Brachycera larva  
   Dixidae 1.0 co,ga  
    Dixa larva 1.0  
    Dixella larva 1.0 co x 
   Dolichopodidae larva 4.0 pr  
   Empididae immature 6.0  

     larva 6.0 pr,co  
      pupa  

    Chelifera larva 6.0  
    Clinocera larva 6.0 pr  

    Hemerodromia  larva 6.0 pr,co  
     pupa  
    Wiedemannia larva 6.0 pr  
   Ephydridae larva 6.0 co,ga,sh,sc,pr  
     pupa 6.0  
    Notiphila larva co,ga,fi x 
    Parydra larva sc x  
    Scatella larva co,ga,sc x 
   Muscidae larva 6.0 pr  
   Psychodidae  
    Pericoma larva 4.0 co,ga x 

   Simuliidae immature 6.0 fi x  
     larva 6.0 fi x  

      pupa 6.0  
    Cnephia larva 4.0 fi x  
    Prosimulium larva 2.6 fi x  x

    Simulium  larva 6.0 fi x  
      pupa 6.0  
    S. aureum larva 7.0 fi x  

    S. jenningsi/luggeri larva 4.5 fi x  
    S. tuberosum larva 5.0 fi x  

    S. vittatum  
   Stratiomyidae larva 8.0 co,ga x 
    Nemotelus larva co x 
    Odontomyia larva 8.0 co,ga,sc x 
    Stratiomys larva co x 
   Syrphidae larva 10.0  

   Tabanidae immature 6.0 pr  
     larva  

    Chrysops  larva 6.0 pr  
    Silvius larva 5.0  



Biological Assessment of Iowa’s Wadeable Streams BMIBI Calculation 

A1-7 

Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

    Tabanus  larva 5.0 pr     
    Tabanus/Atylotus larva 5.0 pr  

   Tipulidae larva 4.0  
     immature 4.0  
     pupa  

    Antocha  larva 3.0 co x x
    Dicranota  larva 3.0 pr  x

    Erioptera larva 7.0 co x 
    Gonomyia larva 5.5 co  
    Helius larva  

    Hexatoma  larva 2.0 pr  x
    Limonia larva 6.0 sh  
    Ormosia larva co x 
    Pedicia larva 6.0 pr  
    Pilaria larva 7.0 pr  
    Pseudolimnophilia larva 2.0  x

    Tipula  larva 4.0 sh,co  
  Ephemeroptera nymph  

     pupa  
     immature  

   Baetidae immature 6.0 co,sc x 
      nymph 6.0 co,sc x 

    Acentrella  nymph 6.0 co x 
    A. ampla  Prob nymph co x 
    A. ampla nymph co x 
    A. parvula nymph 4.0 co x 
    A. turbida nymph 6.0 co x 

    Baetis  immature 6.0 co,sc x 
      nymph 6.0 co,sc x 
    B. armillatus nymph 4.0 co x 
    B. brunneicolor immature 4.0 co x 
     nymph 4.0 co x 

    B. dubius nymph 4.0 co x 
    B. dubius/punctiventris nymph 4.5 co x 
    B. dubius/virile nymph 6.0 co x 

    B. flavistriga nymph 4.0 co x 
    B. intercalaris immature 6.0 co x 
     nymph 6.0 co x 

    B. pluto nymph 6.0 co x 
    B. punctiventris nymph 5.0 co x 
    B. tricaudatus nymph 2.0 co x 

    B. virile nymph 6.0 co x 
    Barbaetis cestus nymph 6.0 co x 

    Callibaetis  nymph 9.0 co x 
    C. fluctuan nymph 9.0 co x 
    C. pictus nymph 9.0 co x 

    Centroptilum  nymph 2.0 co x x
    C. victoriae nymph 2.0 co x x
    Fallceon sp. nymph 6.0 co x 
    F. quilleri nymph 6.0 co x 
    Labiobaetis  immature 6.0 co x 

     nymph 6.0 co x 
    L. dardanus nymph 6.0 co x 

    L. frondalis nymph 5.0 co x 
    L. longipalpus nymph 5.0 co x 
    L. propinquus nymph 6.0 co x 
    Paracloeodes minutus nymph 6.0 sc x  
    Plauditius nymph 6.0 co x 
    P. cestus nymph 6.0 co x 
    P. dubius nymph 4.0 co x 
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Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

    P. dubius/punctiventris nymph 4.5 co   x  
    P. dubius/virilis nymph 5.0 co x 
    P. punctiventris nymph 5.0 co x 
    P. virilis nymph 6.0 co x 
    Procloeon nymph 6.0 co x 
    P. irrubrum nymph 6.0 co x 
    P. rufostrigatum nymph 6.0 co x 
    P. viridocularis nymph 6.0 co x 

    Pseudocloeon  nymph 4.0 co x 
    P. dardanum nymph 6.0 co x 
    P. ephippiatum nymph  
    P. frondale nymph 5.0 co x 
    P. longipalpus nymph 5.0 co x 
    P. propinquum nymph 6.0 co x 
   Baetiscidae 3.0 co,ga,sc  
    Baetisca nymph 4.0 co,ga,sc x 
    B. lacustris nymph 5.0 co,ga,sc x 
    B. laurentina nymph 3.0 co,ga,sc x x

   Caenidae immature 7.0  
    Amercaenis ridens nymph co,fi x 

    Brachycercus  nymph 3.0 co x x
    B. flavus  nymph 3.0 co x x
    B. lacustris nymph 3.0 co x x
    B. nasutus nymph 3.0 co x x

    Caenis  immature  
     nymph 7.0 co,ga,sc x 
    C. anceps nymph 7.0 co,ga,sc x 
    C. diminuta nymph 7.0 co,ga,sc x 
    C. hilaris nymph 7.0 co,ga,sc x 

    C. latipennis nymph 7.0 co,ga,sc x 
    C. punctata nymph 7.0 co,ga,sc x 
    C. tardata nymph 7.0 co,ga,sc x 
    Cercobrachys nymph co x 
    C. serpentis nymph co x 
   Ephemeridae  
    Hexagenia  immature 6.0 co x 
    H. atrocaudata nymph 6.0 co x 
    H. bilineata nymph 6.0 co x 

    H. limbata nymph 6.0 co x 
    Pentagenia vittigera nymph 6.0 co x 

   Ephemerellidae immature  
     nymph 2.0  x

    Ephemerella  nymph 2.0 co,ga,sc x x
    E. inermis nymph 2.0 co,ga,sc x x
    E. needhami nymph 2.0 co,ga,sc x x
    Eurylophella nymph 2.0 co,ga x x

    Serratella  nymph 2.0 co x x
   Heptageniidae immature 4.0 sc,co x  
      nymph 4.0 sc,co x  
    Heptagenia  immature 3.0 sc,co x  x
      nymph 3.0 sc,co x  x
    H. diabasia nymph 3.0 sc,co x  x
    H. flavescens nymph 4.0 sc,co x  
    H. marginalis nymph 4.0 sc,co x  
    H. pulla nymph 4.0 sc,co x  

    Leucrocuta  nymph 1.0 sc,co x  x
    L. hebe nymph 2.0 sc,co x  x

    L. maculipennis nymph 2.0 sc,co x  x
    Nixe  nymph 2.0 sc,co x  x

    N. inconspicua nymph 2.0 sc,co x  x
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    N. perfida nymph 2.0 sc,co  x  x 
    Rhithrogena  nymph 0.0 co,sc x x

    R. jejuna nymph 0.0 co,sc x x
    R. manifesta nymph 0.0 co,sc x x

    Stenacron  immature 7.0 co,sc x 
      nymph 7.0 co,sc x 
    S. interpunctatum nymph 7.0 co,sc x 
    Stenonema  immature 3.7 sc,co x  
      nymph 3.7 sc,co x  
    S. exiguum nymph 5.0 sc,co x  

    S. exiguum/pulchellum nymph 4.0 sc,co x  
    S. femoratum nymph 5.0 sc,co x  

    S. mediopunctatum nymph 3.0 sc,co x  x
    S. meririvulanum nymph 2.0 sc,co x  x

    S. mexicanum nymph 4.0 sc,co x  
    S. pulchellum nymph 3.0 sc,co x  x

    S. pulchellum/terminatum nymph 3.5 sc,co x  
    S. terminatum immature 4.0 sc,co x  
     nymph 4.0 sc,co x  
    S. vicarium nymph 2.0 sc,co x  x

   Isonychiidae  
    Isonychia  nymph 3.8 fi x  
   Leptohyphidae  
    Tricorythodes  nymph 4.0 co x 
     immature  

   Leptophlebiidae nymph 4.0 co,sc  
     immature  

    Leptophlebia  nymph 4.0 co x 
    Paraleptophlebia  nymph 1.0 co,sh  x

   Metretopodidae 2.0  
    Siphloplecton nymph 2.0 co,ga x x

   Oligoneuriidae 2.0  
    Homoeoneuria ammophila nymph fi x  

   Polymitarcyidae 2.0  
    Ephoron nymph 2.0 co x x

    E. album nymph 2.0 co x x
    Tortopus primus nymph 4.5  
   Potamanthidae  
    Anthopotamus immature 4.0 fi x  
     nymph 4.0 fi x  
    A. myops nymph 4.0 fi x  

  Hemiptera immature  
   Belostomatidae immature  
    Belostoma  adult 9.8 pr  
    B. flumineum adult 9.8 pr  
    Lethocerus  adult 4.6 pr  
   Corixidae adult 5.0  
      immature 5.0  

    Glaenocorisini adult unk  
    Hesperocorixa adult 5.0 mp  
    H. vulgarius adult 5.0 mp  
    Palmacorixa adult 5.5 unk  
    P. gillettei adult 5.5 unk  
    P. nana adult 5.5 unk  
    Sigara  adult 4.6 pr,mp,he  
     larva 4.6 mp,co  
    S. alternata adult 4.6 mp,co  
    S. bicoloripennis adult 4.6 mp,co  
    S. mathesoni adult 4.6 mp,co  
    S. trilineata adult 4.6 mp,co  
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    Trichocorixa  adult 5.5 pr     
    T. borealis adult 5.5 pr  
    T. calva adult 5.5 pr  
    T. kanza adult 5.5 pr  
    T. naias adult 5.5 pr  

   Gerridae immature pr  
    Aquarius adult 6.4 pr  
    A. remigis adult 6.4 pr  

    Gerris  adult 6.4 pr  
    Limnoporus adult pr  
    L. dissortis adult pr  
    Metrobates adult 6.4 pr  
    M. hesperius adult 6.4 pr  
    Rheumatobates adult 6.4 pr  
    R. palosi adult 6.4 pr  
    Trepobates adult 6.4 pr  
   Hebridae immature pr  
   Macroveliidae  
    Macrovelia adult pr  
   Mesoveliidae immature pr  
    Mesovelia adult 6.4 pr  
    M. mulsanti adult 6.4 pr  
   Miridae adult  

   Nepidae  
    Nepa adult 4.6 pr  
    Nepa apiculata adult 4.6 pr  

    Ranatra  adult 6.4 pr  
    R. fusca adult 7.3 pr  

   Notonectidae  
    Notonecta adult 5.5 pr  
    N. irrorata adult 5.5 pr  
    N. undulata adult 5.5 pr  
   Pleidae  
    Neoplea adult 5.5 pr  
    N. striola adult 5.5 pr  
   Saldidae immature pr  
   Veliidae immature 6.4 pr  
    Microvelia adult 6.4 pr  
    M. americana adult 6.4 pr  

    Rhagovelia  adult 6.4 pr  
     immature 6.4 pr  

    R. oriander adult 6.4 pr  
  Lepidoptera  
   Cosmopterigidae  
    Pyroderces larva  
   Pyralidae  
    Crambus larva  
    Petrophila larva 5.0 sc,he x  

  Megaloptera  
   Corydalidae  

    Corydalus larva 6.0 pr  
    C. cornutus larva 6.0 pr  
    Chauliodes  larva 4.0 pr  

    C. pectinicornis larva 4.0 pr  
    C. rastricornis larva 4.0 pr  

   Sialidae  
    Sialis larva 4.0 pr  
  Neuroptera larva  
   Sisyridae  
    Climacia larva 6.5 pr  
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  Odonata immature       
   Aeshnidae immature 3.0 pr  

    Aeshna nymph 5.0 pr  
    Aeshna/Anax nymph 5.7 pr  
    A. umbrosa nymph 5.0 pr  
    A. palmata nymph 5.0 pr  
    Anax nymph 6.4 pr  
    A. junius nymph 8.0 pr  

    Boyeria  nymph 2.0 pr  x
    B. vinosa nymph 2.0 pr  x
   Calopterygidae immature 6.0 pr  
    Calopteryx  nymph 5.0 pr  
    Hetaerina  nymph 6.0 pr  
   Coenagrionidae immature 8.0 pr  

     nymph 8.0 pr  
    Amphiagrion nymph 9.0 pr  
    Argia  nymph 6.0 pr  
    Coenagrion/Enallagma  nymph 8.0 pr  

    Enallagma  nymph 8.0 pr  
    Enallagma /Coenagrion  nymph 8.0 pr  
    Hesperagrion nymph 8.0 pr  
   Corduliidae pr  
    Didymops nymph 5.5 pr  
    Macromia nymph 2.0 pr  
    M. illinoiensis nymph 2.0 pr  x
    Neurocordulia nymph 5.0 pr  
    N. molesta nymph 5.0 pr  
    N. xanthosoma nymph 5.0 pr  
    Somatochlora nymph 1.0 pr  x
    S. tenebrosa nymph 1.0 pr  x

   Gomphidae immature 5.0 pr  
     nymph 5.0 pr  
    Arigomphus nymph 6.4 pr  
    Dromogomphus nymph 6.3 pr  
    D. spinosus nymph 6.3 pr  

    Gomphurus  nymph 6.0 pr  
    Gomphus  nymph 5.0 pr  

    Ophiogomphus nymph 1.0 pr  x
    O. carolus nymph 1.0 pr  x
    O. rupinsulensis nymph 1.0 pr  x
    Phanogomphus nymph pr  
    Progomphus immature 8.7 pr  
     nymph 8.7 pr  
    P. obscurus nymph 8.7 pr  
    Stylurus nymph 4.0 pr  
    S. amnicola nymph 4.0 pr  
    S. notatus nymph 4.0 pr  
    S. spiniceps nymph 4.0 pr  
   Libellulidae  
    Erythemis nymph 7.7 pr  
    E. simplicicollis nymph 7.7 pr  
    Libellula nymph 9.8 pr  
    L. luctuosa nymph 9.8 pr  
    L. pulchella nymph 9.0 pr  
    Macrothemis nymph 8.0 pr  
    Pantala hymeanea nymph 6.4 pr  
    Perithemis nymph 10.0 pr  
    Plathemis  nymph 8.0 pr  
    P. lydia nymph 8.0 pr  

  Plecoptera immature  
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   Capniidae        
    Allocapnia  nymph 3.0 sh  x

   Nemouridae  
    Amphinemura nymph 3.0 sh  x
   Perlidae immature 3.0 pr  
     nymph 3.0 pr  

    Acroneuria sp. nymph 0.0 pr  x
    A. abnormis nymph 0.0 pr  x
    A. lycorias nymph 0.0 pr  x
    A. perplexa nymph 0.0 pr  x
    Agnetina immature 2.0 pr  x
     nymph 2.0 pr  x
    A. annulipes nymph 2.0 pr  x
    A. capitata nymph 2.0 pr  x
    A. flavescens nymph 2.0 pr  x
    Attaneuria ruralis nymph 1.0 pr  x
    Neoperla nymph 3.0 pr  x
    N. robisoni nymph 3.0 pr  x

    Paragnetina  nymph 1.0 pr  x
    P. media nymph 1.0 pr  x

    Perlesta  nymph 5.0 pr  
    P. decepiens nymph 5.0 pr  
    P. shubuta nymph 5.0 pr  

    Perlinella  immature 1.0 pr  x
     nymph 1.0 pr  x
    P. drymo nymph 1.0 pr  x
    P. ephyre nymph 1.0 pr  x

   Perlodidae immature 2.0 pr,sc,co,ga  x
    Isoperla  nymph 2.0 pr,co,ga  x

    I. bilineata nymph 4.0 pr  
    I. marlynia nymph 4.0 pr  
    I. signata nymph 2.0 pr,co,ga  x

   Pteronarcyidae sh,de,sc  
    Pteronarcys  nymph 0.0 sh  x
   Taeniopterygidae immature 2.0 sh,co  x
    Taeniopteryx  immature 2.0 sh,co  x
      nymph 2.0 sh,co  x

  Trichoptera larva  
     immature  

      pupa  
   Brachycentridae 1.0  

    Brachycentrus  larva 1.0 fi,sc x  x
    B. americanus larva 1.0 fi,sc x  x
    B. flavus larva 2.2 fi,sc x  x
    B. lateralis larva 1.0 fi,sc x  x

    B. numerosus larva 1.0 fi,sc x  x
    B. occidentalis larva 1.0 fi,sc x  x

    Micrasema larva 2.0 sh  x
    M. gelidum larva 2.0 sh  x
    M. kluane larva 1.0 sh,co  x

   Glossosomatidae 0.0  
    Glossosoma  larva 0.0 sc x  x

     pupa  
   Helicopsychidae 3.0 sc  

    Helicopsyche pupa 3.0 sc  x
    H. borealis larva 3.0 sc x  x
      immature 3.0 sc x  x
   Hydropsychidae immature 5.0 fi x  

     larva 5.0 fi x  
     pupa  
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    Ceratopsyche  immature 4.5 fi x    
      larva 4.5 fi x  
    C. alhedra larva 3.0 fi x  x

    C. alternans larva 3.0 fi x  x
    C. bronta larva 5.0 fi x  
    C. morosa (bifida) larva 6.0 fi x  
    C. slossonae larva 4.0 fi x  

    C. walkeri larva 1.0 fi x  x
    Cheumatopsyche  larva 5.0 fi x  
    Hydropsyche  immature 4.0 fi x  
      larva 4.0 fi x  

    H. arinale larva 5.0 fi x  
    H. betteni larva 6.0 fi x  

    H. bidens larva 3.0 fi x  x
    H. dicantha larva 2.0 fi x  x

    H. orris larva 5.0 fi x  
    H. phalerata larva 1.0 fi x  x
    H. placoda larva 3.0 fi x  x

    H. simulans larva 7.0 fi x  
    Potamyia flava larva 2.0 fi x  x
   Hydroptilidae immature 6.0 mp,sc,co  
      larva 6.0 mp,sc,co  

     pupa  
    Hydroptila  larva 6.0 mp,sc  

    Mayatrichia  larva 6.0 sc x  
    M. ayama larva 6.0 sc x  
    Ochrotrichia larva 6.0 mp  
    Oxyethira larva 3.0 mp,co  x
    Stactobiella larva 2.0 sh  x
   Lepidostomatidae larva 1.0 sh  
    Lepidostoma larva 1.0 sh  
   Leptoceridae immature 4.0  
     pupa  
    Ceraclea  larva 3.0 co,sh,pr  x
    C. cancellata larva 3.0  x
    C. flava larva 3.0  x
    C. neffi larva 3.0  x
    Leptocerus larva 4.6 sh  
    Nectopsyche  larva 3.0 sh,co  x
    N. candida larva 3.0 sh,co  x
    N. diarina larva 3.0 sh,co  x
     pupa 3.0  x
    N. pavida larva 3.0 sh,co  x
    Oecetis larva 8.0 pr,sh  
    O. avara larva 8.0 pr,sh  
    O. avara/disjuncta larva 8.0 pr,sh  
    O. disjuncta larva 8.0 pr,sh  
    O. immobilis larva 8.0 pr,sh  
    O. inconspicua complex larva  
    O. nocturna larva 8.0 pr,sh  

   Limnephilidae immature 4.0  
     larva 4.0  
     pupa  
    Anabolia larva 5.0 sh,co  
    Grammotaulius/Limnephilu larva 4.0  
    Hesperophylax designatus larva 3.0 sh  x
    Ironoquia larva 3.0 sh  x
    Limnephilus larva 3.0 sh,he,co  x

    Pycnopsyche  larva 4.0 sh  
     pupa  
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   Molannidae        
    Molanna larva 6.0 sc,co,pr  
   Philopotamidae 4.0  
    Chimarra larva 4.0 fi x  
    C. aterrima larva 4.0 fi x  
    C. obscura larva 4.0 fi x  
   Phryganeidae  
    Ptilostomis larva 5.0 sh,pr  

   Polycentropodidae immature 6.0 fi,pr  
    Cernotina larva 4.6 pr  
    Cyrnellus fraternus larva 8.0 co,fi  
    Neureclipsis  larva 7.0 fi,sh  
    Nyctiophylax larva 5.0 pr,fi,sh  

    Paranyctiophylax  larva 5.0 pr,fi,sh  
    Polycentropus  larva 6.0 pr,co,sh  

   Psychomyiidae immature 2.0 co,ga  
    Psychomyia  larva 2.0 co,sh  x
    P. flavida larva 2.0 co,sh  x

   Uenoidae  
    Neopylax larva 3.0 sc x  x

Branchiobdellida adult 6.0 cm,pa  
Coelenterata  

 Hydrozoa  
  Hydroida  
   Hydridae  
    Hydra adult 5.0 pr  

Mollusca    
 Gastropoda  
  Basommatophora  
   Ancylidae  
    Ferrissia  adult 6.0 sc x  

   Hydrobiidae adult 8.0 sc  
   Lymnaeidae adult 6.0 sc  
    Fossaria adult 2.6 sc x  x
    Pseudosuccinea columella adult 6.0 sc x  
    Stagnicola adult 6.0 sc x  

   Physidae adult 8.0 sc x  
   Planorbidae adult 8.0 sc  
    Gyraulus adult 8.0 sc x  
    Planorbella adult 8.0 sc x  
   Pleuroceridae  
    Elimia adult 2.5 sc x  x
 Mesogastropoda  
   Valvatidae  
    Valvata adult 8.0 sc x  

 Bivalvia adult fi x  
  Veneroida  

   Corbiculidae  
    Corbicula fluminea adult 6.3 fi x  

   Sphaeriidae  adult 8.0 fi x  
   Unionidae 8.0 fi x  
    Anodontinae adult 8.0 fi x  
    Lasmigona complanata adult 8.0 fi x  
    Potamilus ohiensis adult fi x  

Nematoda adult  
Nematophora adult  
 Gordioidea adult  

   Chordodidae  
    Pantachordodes adult 6.0 pa  

   Gordiidae immature 6.0 pa  



Biological Assessment of Iowa’s Wadeable Streams BMIBI Calculation 

A1-15 

Taxon Life Stage

Biotic 
Index 
Value 

Functional 
Feeding 
Group* Filterer Scraper

Collector / 
Gatherer 

Sensitive 
Taxa 

    Gordius  adult  pa     
   Parachordodidae  
    Paragordius adult pa  

Platyhelminthes  
 Turbellaria adult 6.0  

     immature 6.0  
  Tricladida  
   Planariidae adult 6.0 co x 

    Cura foremanii adult 6.0 co x 
    Dugesia  adult 6.0 co x 
    D. tigrina adult 6.0 co x 
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Functional feeding group abbreviations (Merritt and Cummins 1995; Penak 1989):   
 
co, collector; cm, commensal; de, detrivore; fi, filterer; ga, gatherer; he, herbivore; mp, 
macrophyte piercer; pa, parasite; pr, predator; sc, scraper; sh, shredder; unk, unknown 
 
Merritt, R.W. and K.W. Cummins. 1995. An Introduction to the Aquatic Insects of North 

America. Kendall/Hunt Publishing, Dubuque, Iowa 
 
Pennak, R.W. 1989. Freshwater Invertebrates of the United States, Third Edition. John 

Wiley and Sons. New York, New York. 
 
Biotic Index References: 
 
The following literature sources were used to assign biotic index values for most of the 
benthic macroinvertebrate taxa.    
 
Bode, R.W., M.A. Novak, and L.E. Abele, 1990.  Biological impairment criteria for 

flowing waters in New York State.  Stream Biomonitoring Unit, Bureau of 
Monitoring and Assessment, Division of Water, New York State Department 
of Environmental Conservation. 

 
Hilsenhoff, W.L. 1988.  Rapid field assessment of organic pollution with a family-level 

biotic index. J. N. Am. Benthol. Soc. 7(1):65-68. 
 
Hilsenhoff, W.L. 1987.  An improved biotic index of organic stream pollution.  The 

Great Lakes Naturalist 20(1):31-39. 
 
Lenat, D.R.  1993.  A biotic index for the southeastern United States: derivation and list 

of tolerance values, with criteria for assigning water-quality ratings.  J. N. Am. 
Benthol. Soc. 12(3):279-290. 
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Appendix 1.3.  Benthic Macroinvertebrate Data and Taxa Classifications Used in BMIBI 
Example Calculation. 
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Annelida        
 Oligochaeta 1 1  8.5    co 
Arthropoda       
 Crustacea       
   Talitridae       
    Hyalella azteca 1 4   8    co 
  Isopoda       

   Ascellidae       
    Caecidotea   1   8    co 
 Insecta       
  Coleoptera       
   Dryopidae       

    Helichus lithophilus  8   5   X sc 
    Helichus striatus  1 4   5   X sc 

   Elmidae       
    Dubiraphia   1   6    
    Macronychus glabratus 3 2 3 5 1   4    co 
    Stenelmis   1   5   X sc 

    S. crenata  7   5   X sc 
   Gyrinidae       

    Dineutus   2   4    pr 
   Scirtidae       
    Cyphon  3       
  Diptera       

   Chironomidae 14 19 14 9 53 54 42 5   6 X   co 
   Culicidae  1 1       co 
    Anopheles  1   9.1    fi 
   Empididae       

    Hemerodromia  1 3 1 1 1   6    pr 
   Ephydridae       
    Parydra  1      X sc 

  Ephemeroptera  X   X  
   Baetidae  X   X  
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    Baetis flavistriga  1 1 X  4  X  co 
    Baetis intercalaris 6 12 6 27 1 7 X  6  X  co 

    Fallceon quilleri 7 6 15 16 1 X  6  X  co 
    Labiobaetis propinquus  3 1 X  6  X  co 
    Paracloedes minutus  2 X  6  X X sc 
    Procloeon  8 X  6  X  co 
   Baetiscidae  X   X  
    Baetisca  2 X  4  X  co 

   Caenidae  X   X  
    Caenis   1 4 6 7 X  7  X  co 

   Ephemeridae  X   X  
    Hexagenia limbata  4 X  6  X  co 
   Heptageniidae  2 1 X  4  X X sc 
    Heptagenia diabasia  1 5 11 4 X X 3  X X sc 
    H. flavescens  2 X  4  X X sc 
    Stenacron 

interpunctatum 
 3 3 8 5 24 X  7  X  co 

    Stenonema mexicanum  1 X  4  X X sc 
    S. terminatum 24 17 22 13 2 X  4  X X sc 

   Isonychiidae  X   X  
    Isonychia   3 X  3.8  X  fi 

   Leptohyphidae  X   X  
    Tricorythodes  3 3 2 4 8 4 2 X  4  X  co 
  Hemiptera       
   Belostomatidae       
    Belostoma flumineum  1       pr 
   Gerridae       
    Gerris   1      

   Mesoveliidae  12      pr 
    Mesovelia  1       pr 

  Odonata       
   Aeshnidae       
    Boyeria   1 1  X 2    pr 
   Calopterygidae       

    Calopteryx   2   5    pr 
    Hetaerina   8   6    pr 
   Coenagrionidae       

    Argia   4 1   6    pr 
   Gomphidae       
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    Gomphus   3  5    pr 
   Libellulidae       
    Pantala hymenea  1      pr 

  Plecoptera  X     
   Perlidae  X     

    Acroneuria  1 1 1 7 X X 0    pr 
   Pteronarcyidae  X     
    Pteronarcys   1 2 X X 0    sh 
  Trichoptera 1 X     
   Hydropsychidae 2 5 3 X  5    fi 
    Ceratopsyche bronta  1 1 1 2 10 6 X  5    fi 
    C. morosa 5 1 1 2 4 X  6    fi 
    Cheumatopsyche  1 5 1 1 27 8 24 26 X  5    fi 
    Hydropsyche betteni  1 X  6    fi 

    H. bidens 8 7 6 X X 3    fi 
    H. simulans 25 29 20 7 X  7    fi 

   Hydroptilidae  1 X  6    mp 
    Hydroptila  1 X  6    mp 
   Leptoceridae  X     
    Nectopsyche candida  3 X X 3    sh 
Mollusca         
 Gastropoda       
  Basommatophora       
   Physidae  1 1   8   X sc 
     104 109 99 167 96 94 103 116       
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Appendix 1.4.  BMIBI metric calculation instructions and metric values from example 
data sets. 

 

Metric Instructions:  
 
1.  Multi-habitat Taxa Richness.  Count the number of discrete taxa in the multi-habitat 

sample. Do not count taxa that are represented at lower (more precise) classification 
levels (e.g., Hydropsychidae is not counted as a distinct taxon when Hydropsyche 
bettani is present). 

2.  Standard-habitat taxa richness.  Count the number of discrete taxa in each standard-
habitat sample.  Average the individual sample metric values. 

3.  Multi-habitat EPT richness. Count the number of discrete taxa in the multi-habitat 
sample that belong in either the Ephemeroptera (E), Plecoptera (P), or Trichoptera (T) 
aquatic insect orders. 

4.  Standard-habitat EPT taxa richness.  Count the number of discrete taxa in each 
standard-habitat sample that belong in either the Ephemeroptera (E), Plecoptera (P), or 
Trichoptera (T) aquatic insect orders. Average the individual sample metric values. 

5.  Multi-habitat sensitive taxa richness.  Count the number of discrete taxa in the multi-
habitat sample that are classified as sensitive taxa. 

Metrics 6-12 are calculated from standard-habitat sample data only. 
6.  % abundance 3-dominant taxa.  Sum the three most-abundant taxa, divide by the total 

number of organisms in the sample and multiply by 100. Average the individual 
sample metric values. 

7.  Biotic index.  The number of organisms in each taxon is multiplied by its biotic index 
value and divided by the total number of organisms in the sample; exclude any 
organisms that do not have an assigned biotic index value. Average the individual 
sample metric values. 

8.  % abundance EPT taxa.  Sum all of the organisms classified as EPT taxa, divide by 
the total number of organisms in the sample and multiply by 100. Average the 
individual sample metric values. 

9.  % abundance Chironomidae.  Divide the total number of organisms in the sample by 
the number of organisms classified as Chironomidae (aquatic midges) and 
multiply by 100. Average the individual sample metric values. 

10.  % abundance Ephemeroptera taxa.  Divide the total number of organisms in the 
sample by the number of organisms classified as Ephemeroptera (mayflies) and 
multiply by 100. Average the individual sample metric values. Average the individual 
sample metric values. 

11.  % abundance scraper organisms.  Divide the total number of organisms in the sample 
by the number of organisms belonging to the scraper functional feeding group, and 
multiply by 100. Average the individual sample metric values. 

12. % abundance dominant functional feeding group.  Calculate the percentage of the 
total number of organisms in the sample represented by each functional feeding group 
(ffg), and record the largest percentage (most dominant ffg). Average the individual 
sample metric values. 
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BMIBI metric values from example data sets 

 
 South Skunk River - Story County Sugar Creek - Cedar County 

Storet No. 472708 472708 472708 472708 476601 476601 476601 476601
Sample Date 9/22/97 9/22/97 9/22/97 9/22/97 9/20/96 9/20/96 9/20/96 9/20/96

Sample Type 
Std. 
Hab. 

Std. 
Hab. 

Std. 
Hab. 

Multi-
Hab. 

Std. 
Hab. 

Std. 
Hab. 

Std. 
Hab. 

Multi-
Hab. 

Sample No. 760740 760741 760742 760743 664068 664069 664070 664071
1. Multi-habitat Taxa Richness    37    21 
2.  Standard-habitat taxa richness 15 13 15  8 9 12  
3.  Multi-habitat EPT richness    21    11 
4.  Standard-habitat EPT taxa richness 10 11 11  4 7 8  
5.  Multi-habitat sensitive taxa richness    5    2 
Standard-habitat samples only:         
6.  % abundance 3-dominant taxa 60.6 59.6 57.6  87.5 74.5 74.8  
7.  Biotic index 5.38 5.46 5.37  5.69 5.66 5.24  
8.  % abundance EPT taxa 80.8 80.7 78.8  41.7 41.5 56.3  
9.  % abundance Chironomidae  13.5 17.4 14.1  55.2 57.4 40.8  
10.  % abundance Ephemeroptera taxa 38.5 34.9 44.4  13.5 30.9 22.3  
11.  % abundance scraper organisms 23.1 15.6 24.2  2.1 7.4 11.7  
12.  % abundance dominant functional 
feeding group 39.4 44.0 38.4  67.7 80.9 53.4  
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Appendix 1.5.  Calculating the BMIBI. 

 
South Skunk River - Story County 

Log10 Stream Drainage Area = 2.52                  Storet No.  472708                          Sample Date:  9/22/97 

Metric Value1 Metric formula  Score  
1. Multi-habitat Taxa Richness 37 (#MH-taxa/52)*10 7.1 
2.  Standard-habitat taxa richness 14.33 (#SH-taxa/22.7)*10 6.3 
3.  Multi-habitat EPT richness 21 (#MH-EPT taxa/27)*10 7.8 
4.  Standard-habitat EPT taxa richness 10.67 (#SH-EPT taxa/14.7)*10 7.3 
5.  Multi-habitat sensitive taxa richness 5 (#MH-snstv.taxa/11)*10 4.5 
Standard-habitat samples:    
6.  % abundance 3-dominant taxa 59.27 ((100 - %3dom.taxa)/52)*10 7.8 
7.  Biotic index 5.40 ((7-Bindx)/2.65)*10 6.0 
8.  % abundance EPT taxa 80.10 (%EPT/95.5)*10 8.3 
9.  % abundance Chironomidae  15.01 (100-%Chrnmd.)/98.5)*10 8.6 
10.  % abundance Ephemeroptera taxa 39.26 (%Ephmr./77.7)*10 5.0 
11.  % abundance scraper organisms 20.97 (%scrpr./44.7)*10 4.7 
12.  % abundance dominant functional  
       feeding group 40.62 ((100-%dom.ffg.)/60)*10 9.9 
1 standard-habitat metric values are the average of 3 

replicate samples. 
                                                      (83.3 / 12)10 = 69.4   
                    (sum of metric scores / 12) x 10   

 BM-IBI Score 
(rounded to nearest integer) 69 

   
Sugar Creek - Cedar County 

Log10 Stream Drainage Area = 1.49                  Storet No.  476601                          Sample Date:  9/20/96 

Metric Value1 Metric formula  Score  
1. Multi-habitat Taxa Richness 21 (#MH-taxa/(10.5 + 21.8*LDA))*10 4.9 
2.  Standard-habitat taxa richness 9.67 (#SH-taxa/(4 + 8.7*LDA))*10 5.7 
3.  Multi-habitat EPT richness 11 (#MH-EPT taxa/(1.5 + 12.5*LDA))*10 5.5 
4.  Standard-habitat EPT taxa richness 6.33 (#SH-EPT taxa/(1.2 + 7.30*LDA))*10 5.2 
5.  Multi-habitat sensitive taxa richness 2 (#MH-snstv.taxa/4.4*LDA)*10 3.0 
Standard-habitat samples:    
6.  % abundance 3-dominant taxa 78.93 ((100 - %3dom.taxa)/52)*10 4.0 
7.  Biotic index  5.53 ((7-Bindx)/2.65)*10 5.5 
8.  % abundance EPT taxa 46.50 (%EPT/95.5)*10 4.9 
9.  % abundance Chironomidae  51.14 (100-%Chrnmd.)/98.5)*10 5.0 
10.  % abundance Ephemeroptera taxa 22.24 (%Ephmr./77.7)*10 2.9 
11.  % abundance scraper organisms 7.06 (%scrpr./44.7)*10 1.6 
12.  % abundance dominant functional 
       feeding group 67.32 ((100-%dom.ffg.)/60)*10 5.4 
1 standard-habitat metric values are  the average of 3 

replicate samples. 
                                                      (53.6 / 12)10 = 44.7 
                    (sum of metric scores / 12) x 10 

      BM-IBI Score 
(rounded to nearest integer) 45 
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Appendix 2.  Example Calculations of the Fish Index of Biotic Integrity (FIBI). 
 

Appendix 2.1  Fish Index of Biotic Integrity (FIBI) Metric Scoring Instructions and 
Formulas. 

# Metric Definition Metric Abbrv. 
Stream Drainage 
Area Criterion Metric Scoring Formula 

1a Native fish species richness - 
Mississippi Basin NTVSP-MSP LDA<2.10 

LDA>2.10 
(NTVSP/(16.67*LDA))*10 
(NTVSP/35)*10 

1b Native fish species richness - Missouri 
Basin NTVSP-MO LDA<1.95 

LDA>1.95 
(NTVSP/(11.79*LDA))*10 
(NTVSP/23)*10 

2a Sucker species richness- Mississippi 
Basin SCKRSP-MSP LDA<2.45 

LDA>2.45 
(SKCRSP/(3.26*LDA))*10 
(SCKRSP/8)*10 

2b Sucker species richness- Missouri 
Basin SCKRSP-MO LDA<2.5 

LDA>2.5 
(SCRSP/(2.0*LDA))*10 
(SCKRSP/5)*10 

3a Sensitive fish species richness - 
Mississippi Basin SNSTVSP-MSP LDA<2.1 

LDA>2.1 
(SNSTVSP/(5.71*LDA))*10 
(SNSTVSP/12)*10 

3b Sensitive fish species richness - 
Missouri Basin SNSTVSP-MO LDA<2.1 

LDA>2.1 
(SNSTVSP/(1.43*LDA))*10 
(SNSTVSP/3)*10 

4a Benthic invertivore fish species 
richness - Mississippi Basin BINVSP-MSP LDA<2.0 

LDA>2.0 
(BINVSP/(6.0*LDA))*10 
(BINVSP/12)*10 

4b Benthic invertivore fish species 
richness - Missouri Basin BINVSP-MO LDA<2.25 

LDA>2.25 
(BINVSP/7)*10 
(BINVSP/(3.11*LDA))*10 

Metrics 5-10:  IF total number of fish per 500 ft. stream length < 100, THEN refer to scoring adjustment (SA) below. 

5 Percent abundance three dominant fish 
species P3DOM LDA<1.65 

LDA>1.65 
((100-P3DOM)/(39*LDA))*10 
((100-P3DOM)/64.35)*10 

6 Percent fish as benthic invertivores PBINV LDA<2.55 
LDA>2.55 

(PBINV/(23.84*LDA))*10 
(PBINV/60.8)*10 

7 Percent fish in as omnivores POMNV LDA<1.5 
LDA>1.5 

((80-POMNV)/(80-(50-30.5*LDA)))*10 
((80-POMNV)/75.75)*10 

8 Percent fish in sample as top 
carnivores  PTOPC  LDA <2.4 

LDA>2.4 
(sq.rt.PTOPC/(2.67*LDA-1.4))*10 
(sq.rt.PTOPC/5.0)*10 

9 Percent fish as simple lithophilous 
spawners PSLTH LDA <2.5 

LDA>2.5 
(PSLTH/(12*LDA))*10 
(PSLTH/30.0)*10 

10 Fish assemblage tolerance index TOLINDX All streams ((10 - TOLINDX)/6.3)*10 

SA 

FIBI metrics 5-10 scoring adjustment for low fish abundance: 
-- IF total # fish / 500 ft. stream length < 25, THEN metric score is zero (0) 
-- IF total # fish / 500 ft. stream length > 25 and <50, THEN maximum possible metric score is 2.5 
-- IF total # fish / 500 ft. stream length >50 and <75, THEN maximum possible metric score is 5.0 
-- IF total # fish / 500 ft. stream length >75 and <100, THEN maximum possible metric score is 7.5 

11 Adjusted catch per unit effort  ADJCPUE All Streams (ADJCPUE/100)*10 

12 

PDELT - All Streams.  Scoring adjustments for abnormally high proportion of fish with DELTS (Deformaties, Eroded 
fins, Lesions, Tumors): IF  % fish in sample with DELTS > 2.0 & < 4.0 THEN subtract 5 from total FIBI score (if total 
# fish / 500 ft. stream < 100, then subtract 2.5).   IF  % fish in sample with DELTS > 4.0 THEN subtract 10 from total 
FIBI score (if total # fish / 500 ft. stream < 100, then subtract 5). 

FIBI Scoring Instructions: 
3. Calculate data metrics.  Refer to metric descriptions (Section 5.2.1) and fish species classifications (Appendix 2.2). 
4. Calculate metric scores.  Apply appropriate metric scoring formula depending on drainage basin (metrics 1,2,3,4) and 

stream drainage area (metrics 1-9).  If sample has low total number of fish, apply the scoring adjustment (SA) for metrics 
5-10.  Metric scoring ranges are continuous from 0–10.  Minimum possible score = 0; maximum possible score = 10 (for 
certain metrics it is possible to calculate a score <0 or >10; these scores are automatically rounded to 0 and 10, 
respectively).  

3. Calculate FIBI score.  FIBI = (sum of metrics 1-11)*(10) /11.  If applicable, adjust FIBI score for PDELT (#12) metric. 
Round score to nearest integer.  FIBI scoring range is 0-100. 
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Appendix 2.2.  FIBI Metric Classifications for Fish Species Sampled in IDNR/UHL 

Stream Biocriteria Project. 
 

Fish Species   

Trophic 
metric 
classif-
ication* 

Simple 
Lithophilous 

Spawner 
Tolerance 
Rating** 

Exotic or 
Introduced 

Species 
Sucker 

Sp. 
Petromyzontidae - lampreys    

am. brook lamprey (ammocoete) Lampetra appendix fi  S   
am. brook lamprey (adult) Lampetra appendix   S   

Lepisosteidae - gars      
longnose gar Lepisosteus osseus tc  I   
shortnose gar Lepisosteus platostomus tc  I   

Amiidae - bowfins       
bowfin Amia calva tc  I   

Hiodontidae - mooneyes       
goldeye Hiodon alosoides inv  I   

Clupeidae - herrings      
gizzard shad Dorosoma cepedianum om  T   

Salmonidae - trouts      
rainbow trout Oncorhynchus mykiss tc  S x  
brown trout Salmo trutta tc  S x  
brook trout Salvelinus fontinalis tc  S   

Umbridae- mudminnows      
central mudminnow Umbra limi inv  T   

Esocidae - pikes      
grass pickerel Esox americanus tc  I   
northern pike Esox lucius tc  S   
Aphredoderidae - pirate perches       

pirate perch Aphredoderus sayanus inv  I   
Cyprinidae - minnows      

central stoneroller  Campostoma anomalum he  I   
largescale stoneroller Campostoma oligolepsis he  S   
goldfish Carassius auratus om  I x  
grass carp Ctenopharyngodon idella he  I x  
red shiner Cyprinella lutrensis om  T   
spotfin shiner  Cyprinella spilopterus inv  I   
common carp Cyprinus carpio om  T x  
gravel chub Erimystax x-punctata binv x S   
brassy minnow Hybognathus hankinsoni he  I   
central silvery minnow Hybognathus nuchalis om  S   
plains minnow Hybognathus placitus he  I   
common shiner Luxilus cornutus inv  I   
redfin shiner Lythrurus umbratilis inv x I   
silver chub Macrhybopsis storeriana inv  I   
hornyhead chub Nocomis biguttatus inv  S   
golden shiner Notemigonus crysoleucas om  T   
emerald shiner Notropis atherinoides inv  I   
river shiner Notropis blennius binv  I   
bigmouth shiner Notropis dorsalis inv  T   
ozark minnow Notropis nubilus he  S   
rosyface shiner Notropis rubellus inv  S   
sand shiner  Notropis stramineus inv  I   
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Fish Species   

Trophic 
metric 
classif-
ication* 

Simple 
Lithophilous 

Spawner 
Tolerance 
Rating** 

Exotic or 
Introduced 

Species 
Sucker 

Sp. 
northern mimic shiner Notropis volucellus inv  I   
suckermouth minnow Phenacobius mirabilis binv x I   
s. redbelly dace Phoxinus erythrogaster he  S   
bluntnose minnow Pimephales notatus om  T   
fathead minnow Pimephales promelas om  T   
bullhead minnow Pimephales vigilax  om  I   
flathead chub Platygobio gracilis inv  I   
blacknose dace Rhinichthys atratulus inv  I   
longnose dace Rhinichthys cataractae binv  S   
creek chub Semotilus atromaculatus ge  T   

Catostomidae - suckers      
river carpsucker Carpiodes carpio om  I  x 
quillback carpsucker Carpiodes cyprinus om  I  x 
highfin carpsucker Carpiodes velifer om  I  x 
white sucker Catostomus commersoni om  I  x 
northern hog sucker Hypentelium nigricans binv x S  x 
smallmouth buffalo Ictiobus bubalus om  I  x 
bigmouth buffalo Ictiobus cyprinellus inv  I  x 
silver redhorse Moxostoma anisurum binv x I  x 
black redhorse Moxostoma duquesnei binv x S  x 
golden redhorse Moxostoma erythrurum binv x I  x 
shorthead redhorse Moxostoma 

macrolepidotum 
binv x I  x 

Ictaluridae - freshwater catfishes      
black bullhead Ameicrus melas ge  T   
yellow bullhead Ameicrus natalis binv  I   
channel catfish Ictalurus punctatus tc  I   
slender madtom Noturus exilis binv  S   
stonecat Noturus flavus binv  I   
tadpole madtom Noturus gyrinus binv  S   
freckled madtom Noturus nocturnus binv  I   
flathead catfish Pylodictus olivaris tc  I   

Percopsidae - trout-perches      
trout-perch Percopsis omiscomaycus binv x S   

Gadidae - codfishes      
burbot Lota lota tc  I   

Cyprinodontidae - killifishes      
blackstripe topminnow Fundulus notatus inv  I   

Atherinidae - silversides      
brook silverside Labidesthes sicculus inv  I   

Gasterosteidae - sticklebacks      
brook stickleback Culaea inconstans inv  S   

Percichthyidae - temperate basses      
white bass Morone chrysops tc  I   

Centrarchidae - sunfishes      
northern rock bass Ambioplites rupestris tc  S   
green sunfish Lepomis cyanellus ge  T   
pumkinseed Lepomis gibbosus inv  I   
orangespotted sunfish Lepomis humilus inv  I   
bluegill Lepomis macrochirus inv  I x  
green sunf. X bluegill hybrid Lepomis sp. ge     
smallmouth bass Micropterus dolomieu tc  S   
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Fish Species   

Trophic 
metric 
classif-
ication* 

Simple 
Lithophilous 

Spawner 
Tolerance 
Rating** 

Exotic or 
Introduced 

Species 
Sucker 

Sp. 
largemouth bass Micropterus salmoides na  I x  
white crappie Poxomis annularis tc  I   
black crappie Poxomis nigromaculatus tc  I   

Percidae - perches      
mud darter Etheostoma asprigene binv  I   
rainbow darter Etheostoma caeruleum binv  S   
iowa darter Etheostoma exile binv  S   
fantail darter Etheostoma flabellare binv  I   
johnny darter Etheostoma nigrum binv  I   
orangethroat darter Etheostoma spectabile binv  S   
banded darter Etheostoma zonale binv  S   
yellow perch Perca flavescens inv  I   
northern logperch Percina caprodes binv  S   
blackside darter Percina maculata binv  S   
slenderhead darter Percina phoxocephala binv  S   
sauger Stizostedion canadense tc  I   
walleye Stizostedion vitreum tc  I   

Sciaenidae - drums      
freshwater drum Apodinotus grunniens binv  I   

Cottidae - sculpins      
mottled sculpin Cottus bairdi binv  S   
slimy sculpin Cottus cognatus binv  S   

 
 
*  Fish Species Trophic Feeding Classification:  fi = filter feeder; ge = generalist 

invertivore/carnivore; he = herbivore; in = insectivore/invertivore; na = not applicable; 
om = omnivore; tc = top carnivore.  

 
Trophic feeding classifications are based on Lyons (1992) and Goldstein and Simon 
(1999).  Species accounts of feeding preferences and diet studies from Becker (1983), 
Harlan et al. (1987), and Pflieger (1997) were also reviewed.  A literature review and diet 
analysis of five common stream fishes was conducted by Luzier (2000), and the 
information from this study was used in support of trophic classifications. 
 
**  Fish Species Tolerance Rating:  S = Sensitive species; I = Intermediate Tolerance; T 

= Tolerant species.   
 
The following literature resources were reviewed to assign  tolerance classifications: 
Bailey et al.; Barbour et al. 1999; Bertrand et al. 1996; Karr et al. 1986; Lyons 1992; 
Muncy et al. 1980; NDEC 1991; Niemala et al. 1999; OEPA 1989; Plafkin et al. 1989; 
Whittier et al. 1987; U.S. EPA Region 7;  
 
Determination of simple lithophilous spawners was based primarily on Simon (1999).  
Lyons (1992) was used as a secondary source. 
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Fish Species Classification References: 
 
Bailey, P.A., J.W. Enblom, S.R. Hanson, P.A. Renard, and K. Schmidt.  No date.  

Minnesota River assessment project 1990-1992: a fish community analysis of 
the Minnesota River Basin.  Minnesota Pollution Control Agency and 
Minnesota Department of Natural Resources.  211p. 

 
Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling 1999.  Rapid bioassessment 

protocols for use in streams and wadeable rivers: periphyton, benthic 
macroinvertebrates, and fish, second edition.  EPA-841-B-99-002.  U.S. 
Environmental Protection Agency, Office of Water.  Washington, D.C.   

 
Becker, G.C. 1983.  Fishes of Wisconsin.  Univ. Wisconsin Press, Madison, WI.  1052p. 
 
Bertrand, W.A., R.L. Hite, and D. Day. 1996.  Biological stream characterization (BSC): 

Biological assessment of Illinois stream quality through 1993.  Illinois 
Environmental Protection Agency.  IEPA/BOW/96-058.  Springfield, IL.   44p. 

 
Goldstein R.M. and T.P. Simon. 1999.  Chapter 7:123-202.  Toward a united definition of 

guild structure for feeding ecology of North American Freshwater Fishes.  In 
Assessing the Sustainability and Biological Integrity of Water Resources Using 
Fish Communities.  CRC Press LLC. 

 
Harlan, J.R. and E.B. Speaker 1987.  Iowa fish and fishing, second edition.  Iowa 

Department of Natural Resources.  Des Moines, IA.  323p. 
 
Karr, J.R., K.D. Fausch, P.L. Angermeier, P.R. Yant, and I.J. Schlosser 1986.  Assessing 

biological integrity in running waters:  a method and its rationale.  Illinois Natural 
History Survey Special Publication 5.  Champaign, Illinois.  27p. 

 
Luzier, J.  Assessment of the trophic status of Iowa stream fish for development of 

biocriteria.  University Hygienic Laboratory. UHL Report No. 2000-1. Des 
Moines, IA.  45p. 

 
Lyons, J.  1992.  Using the Index of Biotic Integrity (IBI) to measure environmental 

quality in warmwater streams of Wisconsin.  U.S. Forest Service General 
Technical Report NC-149. 

 
Muncy, R.J., G.J. Atchison, R.V. Bulkley, B.W. Menzel, L.G. Perry, and R.C. 

Summerfelt.  1980.  Effects of suspended solids and sediment on 
reproduction and early life of warmwater fishes: a review.  Dept. of Animal 
Ecology and Iowa Cooperative Fishery Research Unit, Iowa State 
University.  Ames, IA.  100p. 

 
NDEC 1991.  Nebraska Stream Classification Study.  Nebraska Department of 

Environmental Control, Water Quality Division.  Lincoln, Nebraska.  342p. 
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Niemala S., E. Pearson, T.P. Simon, R.M. Goldstein, P.A. Bailey. 1999.  Chapter 13:339-

366.  Development of an Index of Biotic Integrity for the species depauperate 
Lake Agassiz Plain Ecoregion, North Dakota and Minnesota.  In Assessing the 
Sustainability and Biological Integrity of Water Resources Using Fish 
Communities.  CRC Press LLC. 

 
OEPA 1989.  Biological criteria for protection of aquatic life: Volume III.  Standard 

biological field sampling and laboratory methods for assessing fish and 
macroinvertebrate communities.  Ohio Environmental Protection Agency, 
Division of Water Quality Monitoring and Assessment.  Columbus, Ohio.  43p. 

 
Pflieger, W.L. 1997.  The fishes of Missouri.  Missouri Department of Conservation.  

Jefferson City, MO.  372p. 
 
Plafkin, J.L., M.T. Barbour, K.D. Porter, S.K. Gross, and R.M. Hughes. 1989.  Rapid 

bioassessment protocols for use in streams and wadeable rivers: benthic 
macroinvertebrates, and fish.  EPA/444/4-89/001.  U.S. Environmental 
Protection Agency, Office of Water Regulations and Standards.  Washington, 
D.C.   

 
Simon T.P.  1999.   Chapter 6:97-122.  Assessment of Balon’s reproductive guilds with 

application to midwestern North American freshwater fishes.  In Assessing the 
Sustainability and Biological Integrity of Water Resources Using Fish 
Communities.  CRC Press LLC. 
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Appendix 2.3.  Example Data and FIBI Metric Classifications. 
 

 Major Drainage Basin Mississippi Missouri  
Log10 Stream Watershed Drainage Area (LDA) 1.48 2.17  

 Stream Reach Length (ft.) 1070 710  

Fish Species  
Lime Creek - 

8/31/94 
West Nishnabotna R. -  

8/15/94 

Applicable  
Metric 

Classifications * 
Cyprinidae - minnows    

cental stoneroller  Campostoma anomalum 93  he, I 
spotfin shiner  Cyprinella spilopterus 3  inv, I 
common carp Cyprinus carpio 1 om, T, ex 
common shiner Luxilus cornutus 23  inv, I 
plains minnow Hybognathus placitus 2 he, I 
hornyhead chub Nocomis biguttatus 5  inv, S 
bigmouth shiner Notropis dorsalis 4 37 inv, T 
ozark minnow Notropis nubilus 1  he, S 
rosyface shiner Notropis rubellus 1  inv, S 
sand shiner  Notropis stramineus  4 inv, I 
suckermouth minnow Phenacobius mirabilis 2 7 binv, sl, I 
bluntnose minnow Pimephales notatus 7  om, T 
fathead minnow Pimephales promelas  11 om, T 
flathead chub Platygobio gracilis  19 inv, I 
blacknose dace Rhinichthys atratulus 11  inv, I 
creek chub Semotilus atromaculatus 90 3 ge, T 

Catostomidae - suckers    
river carpsucker Carpiodes carpio  3 om, I, sckr 
white sucker Catostomus commersoni 47  om, I, sckr 
northern hog sucker Hypentelium nigricans 2  binv, sl, S, sckr 
golden redhorse Moxostoma erythrurum 1  binv, sl, I, sckr 
shorthead redhorse Moxostoma 

macrolepidotum 
1  binv, sl, I, sckr 

Ictaluridae - freshwater catfishes    
channel catfish Ictalurus punctatus  5 tc, I 
slender madtom Noturus exilis 4  binv, S 

Centrarchidae - sunfishes    
northern rock bass Ambioplites rupestris 3  tc, S 
green sunfish Lepomis cyanellus 5  ge, T 
smallmouth bass Micropterus dolomieu 13  tc, S 

Percidae - perches    
fantail darter Etheostoma flabellare 142  binv, I 
johnny darter Etheostoma nigrum 33  binv, I 

 total # fish 491 92  
 total # fish w/ DELTs 0 0  

*  Fish metric classification abbreviations: 
Trophic guild:  fi = filter feeder; ge = generalist invertivore/carnivore; he = herbivore; in = insectivore/invertivore;  
om = omnivore; tc = top carnivore. Simple Lithophilous Spawner  = sl.  Tolerance Rating:  S = Sensitive species; 
I = Intermediate Tolerance; T = Tolerant species. Exotic or Introduced Species =ex.  Sucker sp. (Catostomidae) = 
sckr. 
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Appendix 2.4.  FIBI Metric Values from Example Data. 
 Lime Creek - 

8/31/94 
West Nishnabotna R. -  

8/15/94 
 

 Major Drainage Basin Mississippi Missouri  
Log10 Stream Watershed Drainage Area (LDA) 1.48 2.17  

 Stream Reach Length (ft.) 1070 710  
 Metric: Value Value  

 1.  ntvsp 21 9  
 2.  sckrsp 4 1  
 3.  senstvsp  7 0  
 4.  bnthcinv 7 1  
 5.  %3domsp. 66.2 72.8  
 6.  %bnthcinv  37.7 7.6  
 7.  %omnv  11 16.3  
 8.  %topc  3.2 5.4  
 9.  %slitho  1.2 7.6  
 10.  tolindx  5.78 7.83  
 11.  adjcpue  36 5.6  
  12.  %DELTs 0 0  
 Total No. Fish / 500 ft. 229.4 64.8  

FIBI Metric Definitions: 
1.  ntvsp - # native fish species excluding exotic species and commonly stocked farm pond species ( i.e., largemouth 
bass and bluegill) 
2.  sckrsp - # fish species belonging to sucker family (Catostomidae) 
3.  senstvsp - # fish species classified as sensitive to stream degradation 
4.  bnthcinv - # benthic invertivore fish species 
5.  %3domsp. = % abundance of three most abundant fish species 
6.  %bnthcinv = % abundance of fish as benthic invertivores 
7.  %omnv = % abundance of fish as omnivores 
8.  %topc = % abundance top carnivore fish (note: largemouth bass are not classified as top carnivores in this metric 
but are included in the total fish count)  
9.  %slitho = % fish in sample as simple lithophilous spawners 
10.  tolindx = fish assemblage tolerance index 
11.  adjcpue = adjusted catch per unit effort (total # fish - # tolerant fish / 100 ft. stream)  
12.  %DELTs = % abundance of fish with DELTS (Deformaties, Eroded fins, Lesions, Tumors): 

 



Biological Assessment of Iowa’s Wadeable Streams Appendix 2: FIBI Calculation 

A2-9 

Appendix 2.5.  Calculating the FIBI. 
 

 Lime Creek - 8/31/94  

Major Drainage Basin:  Mississippi         Log10 Drainage Area (LDA):  1.48         Stream Reach Length (ft.):  1070 

Metrics: raw metric value applicable metric formula (Appendix 2.1) 
metric score 

(adjusted score) 
1.  ntvsp 21 (#sp/(16.67*LDA))*10 8.5 
2.  sckrsp 4 (#sp/(3.26*LDA))*10 8.3 
3.  senstvsp  7 (#sp/(5.71*LDA))*10 8.3 
4.  bnthcinv 7 (#sp/(6.0*LDA))*10 7.9 
5.  %3domsp. 66.2 ((100-%3domsp.)/(39*LDA))*10 5.9 
6.  %bnthcinv  37.7 (%binv/(23.84*LDA))*10 10.7  (10) 
7.  %omnv  11 ((80-%omnv)/(80-(50-30.5*LDA)))*10 9.2 
8.  %topc  3.2 (sq.root%topc/(2.67*LDA-1.4))*10 7.0 
9.  %slitho  1.2 (%slitho/(12*LDA))*10 0.7 
10.  tolindx  5.78 ((10 - tolindx)/6.3)*10 6.7 
11.  adjcpue  36 (adjcpue/100)*10 3.6 
12.  %DELTs 0 not applicable  
Low fish abundance 
scoring adjustment 

229.4 / 500 ft. not applicable  

  *FIBI 69 
 

 West Nishnabotna R. - 8/15/94  

Major Drainage Basin:  Missouri            Log10 Drainage Area (LDA):  2.17         Stream Reach Length (ft.):  710 

Metrics: raw metric value applicable metric formula (Appendix 2.1) 
metric score 

(adjusted score) 
1.  ntvsp 9 (#sp/23)*10 3.9 
2.  sckrsp 1 (#sp/(2.0*LDA))*10 2.3 
3.  senstvsp  0 (#sp/3)*10 0 
4.  bnthcinv 1 (#sp/(3.11*LDA))*10 1.5 
5.  %3domsp. 72.8 ((100-%3domsp.)/64.35)*10 4.2 
6.  %bnthcinv  7.6 (%binv/(23.84*LDA))*10 1.5 
7.  %omnv  16.3 ((80-%omnv)/75.75)*10 8.4 (5.0) 
8.  %topc  5.4 (sq.root%topc/(2.67*LDA-1.4))*10 5.3 (5.0) 
9.  %slitho  7.6 (%slitho/(12*LDA))*10 2.9 
10.  tolindx  7.83 ((10 - tolindx)/6.3)*10 3.4 
11.  adjcpue  5.6 (adjcpue/100)*10 0.6 
12.  %DELTs 0 not applicable  
Low fish abundance 
scoring adjustment 

64.8 / 500 ft.  metrics 5-10, maximum poss. score = 5.0  

 *FIBI 28 
 
* FIBI calculation steps:  (1) sum metrics 1-11 (use adjusted scores when applicable); (2) subtract %DELT scoring 
adjustment (when applicable); (3) divide by 11, then multiply by 10 and round to nearest integer. 
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Appendix 3.  1994-1998 Data Used in the Development and Calibration of the BMIBI 
and FIBI. 

 
Appendix 3.1.  1994–1998 Sample Sites. 
 

SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO- 

REGION 
SITE 

TYPE*
400501 SOUTH WHITEBREAST 

CREEK 
APPROXIMATELY 4.5 MILES NORTH 
AND 6 MILES EAST OF WELDON 

CLARKE 40A-LFTP CRS 

400502 LONG CREEK DECATUR STATE WILDLIFE AREA-- 
APPROXIMATELY 3 MILES WEST & 2.5 
MILES SOUTH OF VAN WERT 

DECATUR 40A-LFTP CRS 

400601 SOAP CREEK APPROXIMATELY 3 MILES SOUTHWEST 
OF ELDON-- ADJACENT TO ELDON 
SWMA 

DAVIS 40A-LFTP CRS 

400602 LOTTS CREEK RINGOLD SWMA-- 11 MILES WEST OF 
LAMONI 

RINGGOLD 40A-LFTP CRS 

400701 LICK CREEK SHIMEK SF-- LICK CREEK UNIT-- 
APPROXIMATELY 2 MILES SOUTH & 3 
MILES EAST OF FARMINGTON 

LEE 40A-LFTP CRS 

400702 CHEQUEST CREEK APPROXIMATELY 1.5 MILES WEST & 1 
MILE NORTH OF PITTSBURG 

VAN BUREN 40A-LFTP CRS 

400703 WHITE BREAST CREEK COUNTY ROAD H20-- APPROXIMATELY 
6 MILES SOUTH OF LACONA 

LUCAS 40A-LFTP CRS 

400801 NORTH CEDAR CREEK APPROXIMATELY 2 MILES WEST & 1/2 
MILE NORTH OF BUSSEY 

MARION 40A-LFTP TEST 

400802 SAUNDERS BRANCH IMMEDIATELY DOWNSTREAM MT. 
PLEASANT SE WWTP MIXING ZONE 

HENRY 40A-LFTP TEST 

400803 SAUNDERS BRANCH SAUNDERS PARK-- DOWNSTREAM 
APPROXIMATELY 0.3 MILES FROM MT. 
PLEASANT MGP SITE 

HENRY 40A-LFTP TEST 

400804 SAUNDERS BRANCH ADJACENT TO MT. PLEASANT MGP 
SITE-- WEST HIGHWAY 34 

HENRY 40A-LFTP TEST 

400805 SAUNDERS BRANCH UPSTREAM MT. PLEASANT MGP SITE 
APPROXIMATELY 1/4 MILES 

HENRY 40A-LFTP TEST 

400806 HEATHER BRANCH APPROXIMATELY 1.5 MILES SOUTH OF 
MT. PLEASANT 

HENRY 40A-LFTP TEST 

471501 WILLOW CREEK APPROXIMATELY 5 MILES WEST & 1/2 
MILES NORTH FROM QUIMBY 

CHEROKEE 47A-NWILP CRS 

471502 FLOYD RIVER SHELDON WELL FIELD-- 
APPROXIMATELY 1.5 MILES 
NORTHEAST OF SHELDON 

O'BRIEN 47A-NWILP CRS 

471503 WATERMAN CREEK WHITROCK INDIAN VILLAGE-- 
APPROXIMATELY 1/2 MILE NORTH & 3 
MILES EAST OF SUTHERLAND 

O'BRIEN 47A-NWILP CRS 

471601 LITTLE ROCK CREEK LITTLE ROCK COUNTY WILDLIFE 
AREA-- APPROXIMATELY 1.5 MILES 
EAST OF GEORGE 

LYON 47A-NWILP CRS 

471602 LITTLE WATERMAN 
CREEK 

WATERMAN CREEK SWMA-- 
APPROXIMATELY 7 MILES SOUTH OF 
HARTLEY 

O'BRIEN 47A-NWILP CRS 

471701 HALFWAY CREEK IMMEDIATELY DOWNSTREAM OF 
GALVA WWTP MIXING ZONE 

IDA 47A-NWILP WSHD

471702 HALFWAY CREEK CITY OF GALVA STP MIXING ZONE IDA 47A-NWILP WSHD
471703 HALFWAY CREEK IMMEDIATELY UPSTREAM OF GALVA 

WWTP MIXING ZONE 
IDA 47A-NWILP WSHD

471704 SILVER CREEK APPROXIMATELY 6 MILES NORTH & 2 
MILES EAST OF IDA GROVE 

IDA 47A-NWILP WSHD

471705 MAPLE RIVER APPROXIMATELY 4.5 MILES SOUTH & 
1.5 MILES WEST OF AURELIA 

CHEROKEE 47A-NWILP WSHD

471706 MAPLE RIVER APPROXIMATELY 1.5 MILES WEST & 1 
MILE NORTH OF GALVA 

IDA 47A-NWILP WSHD
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SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO 

REGION 
SITE 
TYPE 

471707 MAPLE RIVER APPROXIMATELY 2.5 MILES NORTH & 1 
MILE WEST OF AURELIA 

CHEROKEE 47A-NWILP WSHD

471708 LITTLE MAPLE RIVER APPROXIMATELY 4.5 MILES NORTH OF 
GALVA 

CHEROKEE 47A-NWILP WSHD

471709 MAPLE CREEK APPROXIMATELY 1 MILE N/NE OF 
AURELIA 

CHEROKEE 47A-NWILP WSHD

471710 ELK CREEK APPROXIMATELY 3 MILES EAST & 2 
MILES NORTH OF IDA GROVE 

IDA 47A-NWILP WSHD

471711 MAPLE RIVER APPROX 4 MI NORTH OF IDA GROVE IDA 47A-NWILP WSHD
471712 MAPLE RIVER APPROX 1 MI SW OF GALVA IDA 47A-NWILP WSHD
471801 MILL CREEK APPROXIMATELY 3.5 MILES WEST & 1/2 

MILE SOUTH OF LARRABEE 
CHEROKEE 47A-NWILP CRS 

472401 LITTLE BEAVER 
CREEK 

APPROXIMATELY 3 MILES SW OF 
WOODWARD-- APPROXIMATELY 0.6 
MILES UPSTREAM OF CONFLUENCE 
WITH BEAVER CREEK 

DALLAS 47B-DML CRS 

472402 BEAVER CREEK ADJACENT TO THE CITY OF BEAVER BOONE 47B-DML TEST 
472403 WHITE FOX CREEK APPROXIMATELY 5.5 MILES N/NE OF 

WEBSTER CITY 
HAMILTON 47B-DML CRS 

472501 WILLOW CREEK WILLOW CREEK WILDLIFE AREA 
(WORTH CO)-- APPROXIMATELY 2 
MILES E/SE OF HANLONTOWN 

WORTH 47B-DML CRS 

472502 MAYNES CREEK MALLORY COUNTY PARK-- 
APPROXIMATELY 5 MILES SOUTH OF 
HAMPTON 

FRANKLIN 47B-DML CRS 

472503 BIG MUDDY CREEK APPROXIMATELY 3 MILES EAST & 3 
MILES NORTH OF SPENCER 

CLAY 47B-DML CRS 

472504 WEST BUTTRICK 
CREEK 

ADJACENT TO SPRING LAKE PARK 
(GREENE COUNTY) 

GREENE 47B-DML CRS 

472505 SOUTH FORK IOWA 
RIVER 

LOGSDON COUNTY PARK-- 
APPROXIMATELY 8.5 MILES SOUTH OF 
IOWA FALLS 

HARDIN 47B-DML CRS 

472506 WINNEBAGO RIVER LANDE ACCESS-- APPROXIMATELY 3 
MILES WEST & 1.5 MILES NORTH OF 
LAKE MILLS 

WINNEBAGO 47B-DML CRS 

472507 BUTTRICK CREEK WATERS COUNTY WILDLIFE AREA-- 
APPROXIMATELY 3 MILES WEST OF 
GRAND JUNCTION 

GREENE 47B-DML CRS 

472508 SOUTH SKUNK RIVER APPROXIMATELY 3 MILES NORTH & 2 
MILES EAST OF AMES 

STORY 47B-DML CRS 

472601 MOSQUITO CREEK UPSTREAM OF HIGHWAY 44 BRIDGE-- 5 
MILES EAST OF PANORA 

DALLAS 47B-DML CRS 

472602 LITTLE SIOUX RIVER APPROXIMATELY 1 MILE WEST OF 
DIAMOND LAKE-- NE OF LAKE PARK 

DICKINSON 47B-DML CRS 

472603 LITTLE SIOUX RIVER HORSHOE BEND COUNTY PARK-- 
APPROXIMATELY 1.5 MILES SOUTH & 2 
MILES WEST OF MILFORD 

DICKINSON 47B-DML CRS 

472604 LIZARD CREEK APPROXIMATELY 3.5 MILES SOUTH OF 
CLARE 

WEBSTER 47B-DML CRS 

472605 PRAIRIE CREEK DOLLIVER STATE PARK-- 
APPROXIMATELY 2 MILES WEST & 2 
MILES NORTH OF LEHIGH 

WEBSTER 47B-DML CRS 

472701 PLUM CREEK APPROXIMATELY 3.5 MILES EAST & 3.5 
MILES NORTH OF ALGONA 

KOSSUTH 47B-DML CRS 

472702 BLACK CAT CREEK COUNTY ROAD P30-- APPROXIMATELY 
2 MILES WEST & 5 MILES NORTH OF 
ALGONA 

KOSSUTH 47B-DML CRS 

472703 BEAR CREEK IMMEDIATELY DOWNSTREAM FROM 
ROLAND WWTP MIXING ZONE 

STORY 47B-DML WSHD

472704 BEAR CREEK CITY OF ROLAND STP MIXING ZONE STORY 47B-DML WSHD
472705 BEAR CREEK APPROXIMATELY 1/4 MILE UPSTREAM 

FROM ROLAND WWTP OUTFALL 
STORY 47B-DML WSHD
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SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO 

REGION 
SITE 
TYPE 

472706 SOUTH SKUNK RIVER RIVER VALLEY PARK-- 
APPROXIMATELY 1/8 MILE SOUTH OF 
13TH STREET-- AMES 

STORY 47B-DML WSHD

472707 KEIGLEY BRANCH APPROXIMATELY 1 MILE NORTH & 3 
MILES EAST OF GILBERT 

STORY 47B-DML WSHD

472708 SOUTH SKUNK RIVER IMMEDIATELY UPSTREAM FROM 
CONFLUENCE WITH SQUAW CREEK-- 
SOUTHEAST OF AMES 

STORY 47B-DML WSHD

472709 BEAR CREEK SKUNK RIVER GREENBELT AREA-- NE 
OF AMES-- APPROXIMATELY 1/8 MILE 
UPSTREAM FROM MOUTH 

STORY 47B-DML WSHD

472710 LONG DICK CREEK APPROXIMATELY 2 MILES WEST & 3/4 
MILES NORTH OF ROLAND 

STORY 47B-DML WSHD

472711 LONG DICK CREEK APPROXIMATELY 3 MILES NORTH & 1/4 
MILE WEST OF ROLAND 

HAMILTON 47B-DML WSHD

472712 SOUTH SKUNK RIVER IMMEDIATELY UPSTREAM OF 
LINCOLNWAY BRIDGE IN AMES 

STORY 47B-DML WSHD

472714 SOUTH SKUNK RIVER 1 MILE EAST OF RANDALL-- UPSTREAM 
OF COUNTY ROAD D65 BRIDGE 

HAMILTON 47B-DML WSHD

472715 SOUTH SKUNK RIVER APPROXIMATELY 1 MILE WEST & 1/2 
MILE SOUTH OF ELLSWORTH 

HAMILTON 47B-DML WSHD

472716 DRAINAGE DITCH #71 APPROXIMATELY 1.5 MILE SOUTH & 1/2 
MILE EAST OF JEWELL 

HAMILTON 47B-DML WSHD

472717 SOUTH SKUNK RIVER APPROXIMATELY 1/4 MILE UPSTREAM 
STORY CITY WWTP & DOWNSTREAM 
CITY STORM SEWER OUTFALL 

STORY 47B-DML WSHD

472718 SOUTH SKUNK RIVER APPROX. 300 FT. UPSTR. CONCRETE 
STORM SEWER OUTFALL IN STORY 
CITY 

STORY 47B-DML WSHD

472719 SOUTH SKUNK RIVER IMMEDIATELY DOWNSTREAM OF 
STORY CITY WWTP EFFLUENT MIXING 
ZONE 

STORY 47B-DML WSHD

472720 SOUTH SKUNK RIVER APPROXIMATELY 200' UPSTREAM 
STORY CITY WWTP OUTFALL 

STORY 47B-DML WSHD

472721 E. FRK. DES MOINES 
RIVER 

SENECA SWMA-- APPROXIMATELY 5 
MILES EAST & 1 MILE NORTH OF 
RINGSTEAD 

KOSSUTH 47B-DML CRS 

472722 SOUTH SKUNK RIVER APPROX. 1/4 MILE WEST OF 
ELLSWORTH DWNSTR. OF HWY 175 
BRIDGE 

HAMILTON 47B-DML WSHD

472801 WALNUT CREEK 8TH STREET GREENBELT-- WINDSOR 
HEIGHTS 

POLK 47B-DML TEST 

472802 NORTH RACCOON 
RIVER 

RACCOON RIVER GREENBELT-- 
APPROXIMATELY 2.75 MILES NORTH OF 
SAC CITY 

SAC 47B-DML CRS 

472803 BOONE RIVER BELLS MILL PARK-- APPROXIMATELY 
3.5 MILES NORTH & 1/2 MILE EAST OF 
STRATFORD 

HAMILTON 47B-DML CRS 

472804 SKILLET CREEK DOWNSTREAM APPROXIMATELY 175' 
FROM DAYTON WWTP OUTFALL 

WEBSTER 47B-DML TEST 

472805 SKILLET CREEK UPSTREAM APPROXIMATELY 120' 
FROM DAYTON WWTP OUTFALL 

WEBSTER 47B-DML TEST 

473401 LIME CREEK LIME CREEK PARK-- APPROXIMATELY 
1.5 MILES NE OF BRANDON 

BUCHANAN 47C-IS CRS 

473402 CRANE CREEK APPROXIMATELY 1 MILE WEST OF 
LOURDES 

HOWARD 47C-IS CRS 

473403 CRANE CREEK HOWARD/CHICKASAW CO LINE-- 
APPROX 0.9 MI. DOWNSTREAM 
CONFLUENCE W/ SPRING CREEK & 3 
MILES N/NW OF JERICO 

CHICKASAW 47C-IS TEST 

473404 WAPSIPINICON RIVER TWIN PONDS CHICKASAW COUNTY 
PARK-- APPROXIMATELY 5 MILES 
SOUTHEAST OF IONIA 

CHICKASAW 47C-IS CRS 
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SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO 

REGION 
SITE 
TYPE 

473501 E FRK WAPSIPINICON 
RIVER 

APPROXIMATELY 5 MILES NORTH & 3 
MILES WEST OF NEW HAMPTON 

CHICKASAW 47C-IS CRS 

473502 BURR OAK CREEK APPROXIMATELY 2 MILES NORTH & 4 
MILES EAST OF OSAGE 

MITCHELL 47C-IS CRS 

473503 VOLGA RIVER APPROXIMATELY 3 MILES NORTH 
FROM MAYNARD-- IMMEDIATELY 
UPSTREAM FROM TWIN BRIDGES 
COUNTY PARK 

FAYETTE 47C-IS CRS 

473504 BEAR CREEK APPROXIMATELY 2 MILES WEST & 1 
MILE NORTH OF SHELLSBURG 

BENTON 47C-IS CRS 

473505 DEER CREEK APPROXIMATELY 1 MILE N/NW FROM 
CARPENTER 

MITCHELL 47C-IS CRS 

473506 LITTLE CEDAR RIVER COLWELL COUNTY PARK-- 
APPROXIMATELY 2.5 MILES WEST OF 
COLWELL 

FLOYD 47C-IS CRS 

473601 BLACK HAWK CREEK POPP COUNTY ACCESS-- 
APPROXIMATELY 2.5 MILES SW OF 
HUDSON 

BLACK HAWK 47C-IS CRS 

473602 BEAR CREEK BUCHANAN COUNTY PARK-- 
APPROXIMATELY 2 MILES EAST & 1/2 
MILE SOUTH OF BRANDON 

BUCHANAN 47C-IS CRS 

473603 COLDWATER CREEK APPROXIMATELY 3 MILES SOUTH & 1 
MILE EAST OF GREENE 

BUTLER 47C-IS CRS 

473604 BAILEY CREEK INGREBRETSEN COUNTY PARK-- 
APPROXIMATELY 4 MILES WEST & 1.5 
MILES NORTH OF SHEFFIELD 

FRANKLIN 47C-IS CRS 

473605 SOUTH BEAVER 
CREEK 

APPROXIMATELY 1 MILE SOUTH & 1.25 
MILES WEST OF PARKERSBURG 

GRUNDY 47C-IS CRS 

473606 BUFFALO CREEK TMDL SITE #13 / APPROXIMATELY 4 
MILES EAST OF CENTRAL CITY 

LINN 47C-IS CRS 

473607 WAPSIPINICON RIVER WAPSIPINICON SWMA-- 
APPROXIMATELY 2 MILES NORTH & 2 
MILES WEST OF MCINTYRE 

MITCHELL 47C-IS CRS 

473608 ROCK CREEK APPROXIMATELY 1/4 MILE EAST OF 
ROCK CREEK (TOWN) 

MITCHELL 47C-IS CRS 

473701 E. BR. WAPSIPINICON 
RIVER 

SWEET MARSH SWMA-- HIGHWAY 93-- 
APPROXIMATELY 2 MILES NORTH & 1 
MILE EAST OF TRIPOLI 

BREMER 47C-IS CRS 

473702 PINE CREEK APPROXIMATELY 3.5 MILES NORTH & 2 
MILES WEST OF QUASQUETON 

BUCHANAN 47C-IS CRS 

473703 PLUM CREEK APPROXIMATELY 2.5 MILES NORTH OF 
HOPKINTON 

DELAWARE 47C-IS CRS 

473704 LITTLE TURKEY 
RIVER 

GOULDSBURG COUNTY PARK-- 
APPROXIMATELY 500' DOWNSTREAM 
OF CONFLUENCE WITH CRANE CREEK 

FAYETTE 47C-IS CRS 

475401 JORDAN CREEK APPROXIMATELY 1.5 MILES UPSTREAM 
FROM CONFLUENCE WITH FARM 
CREEK 

POTTAWATTA
MIE 

47E-SRLP CRS 

475402 WEST NISHNABOTNA 
RIVER 

APPROXIMATELY 1 MILE NE OF IRWIN--
SHELBY COUNTY UPPER 
NISHNABOTNA HABITAT AREA 

SHELBY 47E-SRLP CRS 

475403 WEST NISHNABOTNA 
RIVER 

APPROXIMATELY 2.5 MILES N/NE OF 
KIRKMAN-- APPROXIMATELY 150'  
UPSTREAM FROM E/W COUNTY ROAD 
BRIDGE 

SHELBY 47E-SRLP TEST 

475404 EAST BRANCH WEST 
NISHNABOTNA RIVER 

APPROXIMATELY 4.5 MILES NE OF 
AVOCA 

SHELBY 47E-SRLP CRS 

475501 WEST TARKIO CREEK APPROXIMATELY 6 MILES E/SE OF 
SHENANDOAH 

PAGE 47E-SRLP CRS 

475601 INDIAN CREEK UPSTREAM HIGHWAY 6 BRIDGE-- 
APPROXIMATELY 2 MILES WEST & 1/2 
MILE NORTH OF LEWIS 

CASS 47E-SRLP CRS 

475602 PILOT BRANCH APPROXIMATELY 1/2 MILE NORTHEAST 
OF STENNETT 

MONTGOMERY 47E-SRLP CRS 



Biological Assessment of Iowa’s Wadeable Streams Biological Index Results 

A3-5 

SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO 

REGION 
SITE 
TYPE 

475603 WALNUT CREEK APPROXIMATELY 3 MILES WEST & 1 
MILE NORTH OF RED OAK-- 
DOWNSTREAM FROM BRIDGE 

MONTGOMERY 47E-SRLP TEST 

475604 WALNUT CREEK APPROXIMATELY 3 MILES WEST & 1 
MILE NORTH OF RED OAK-- UPSTREAM 
FROM BRIDGE 

MONTGOMERY 47E-SRLP TEST 

475701 PIDGEON CREEK APPROXIMATELY 7 MILES WEST OF 
NEOLA 

POTTAWATTA
MIE 

47E-SRLP CRS 

475702 KEG CREEK APPROXIMATELY 1/4 MILE WEST OF 
MINEOLA 

MILLS 47E-SRLP CRS 

475703 MAPLE RIVER APPROXIMATELY 1 MILE N/NE OF IDA 
GROVE 

IDA 47E-SRLP WSHD

475704 ODEBOLT CREEK APPROXIMATELY 1/4 MILE UPSTREAM 
FROM MOUTH-- NEXT TO AMERICAN 
LEGION PARK-- IDA GROVE 

IDA 47E-SRLP WSHD

475705 ODEBOLT CREEK APPROXIMATELY 2 MILES EAST AND 
1/2 MILE SOUTH OF IDA GROVE 

IDA 47E-SRLP WSHD

475706 MAPLE RIVER APPROXIMATELY 1/8 MILE 
DOWNSTREAM IDA GROVE WWTP 
OUTFALL 

IDA 47E-SRLP WSHD

475801 OTTER CREEK APPROXIMATELY 3/4 MILES 
NORTHWEST OF DELOIT 

CRAWFORD 47E-SRLP CRS 

475802 BIG CREEK APPROXIMATELY 4 MILES NORTH & 1/2 
MILE WEST OF DENISON 

CRAWFORD 47E-SRLP CRS 

476401 BUCK CREEK APPROXIMATELY 8 MILES WEST OF 
BARNES CITY-- POWESHIEK/MAHASKA 
COUNTY LINE 

POWESHIEK 47F-RLP CRS 

476402 NORTH BRANCH 
NORTH RIVER 

ADJ. TO GOELDNER WOODS-- MADISON 
CO. PARK-- LOW. REACH BNDRY IS 
APPROX. 150' UPST. FROM N/S CO. RD 
BRIDGE 

MADISON 47F-RLP CRS 

476403 OLD MANS CREEK APPROXIMATELY 1 MILE UPSTREAM 
CONFLUENCE WITH N. BRANCH OLD 
MAN'S CREEK-- 3.5 MILES NE OF 
WILLIAMSTOWN 

JOHNSON 47F-RLP CRS 

476501 HOWERDON CREEK APPROXIMATELY 4 MILES WEST AND 2 
MILES NORTH OF WINTERSET 

MADISON 47F-RLP CRS 

476502 BIG SLOUGH CREEK SPRING RUN SPEEDWAY-- 
APPROXIMATELY 4 MILES SOUTH OF 
COLUMBUS CITY 

LOUISA 47F-RLP CRS 

476503 ROCK CREEK APPROXIMATELY 2 MILES SOUTH AND 
1 MILE WEST OF TIPTON 

CEDAR 47F-RLP CRS 

476504 RICHLAND CREEK APPROXIMATELY 1/2 MILE NORTH OF 
HAVEN 

TAMA 47F-RLP CRS 

476505 LYTLE CREEK APPROXIMATELY 1.5 MILES NORTH & 4 
MILES WEST OF ZWINGLE 

DUBUQUE 47F-RLP CRS 

476506 WEST BRANCH 102 
RIVER 

APPROXIMATELY 3 MILES EAST OF 
NEW MARKET 

TAYLOR 47F-RLP TEST 

476507 LONG CREEK APPROXIMATELY 3 MILES SOUTH OF 
COLUMBUS JUNCTION 

LOUISA 47F-RLP CRS 

476601 SUGAR CREEK DOWNSTREAM OF UNNAMED 
TRIBUTARY-- STREAM CARRYING 
TIPTON EAST WWTP EFFLUENT 

CEDAR 47F-RLP WSHD

476602 SUGAR CREEK UPSTREAM OF UNNAMED TRIBUTARY--
STREAM CARRYING TIPTON EAST 
WWTP EFFLUENT 

CEDAR 47F-RLP WSHD

476603 SUGAR CREEK APPROXIMATELY 2.5 MILES SOUTH & 1 
MILE EAST OF TIPTON-- PASTURE SITE 

CEDAR 47F-RLP WSHD

476604 SUGAR CREEK APPROXIMATELY 1 MILE NORTH & 2.5 
MILES WEST OF WILTON-- BEDROCK 
SITE 

CEDAR 47F-RLP WSHD

476605 MUD CREEK DOWNSTREAM OF NORTHSTAR STEEL 
OUTFALL-- WILTON 

MUSCATINE 47F-RLP WSHD

476606 MUD CREEK UPSTREAM OF NORTHSTAR STEEL 
OUTFALL-- WILTON 

MUSCATINE 47F-RLP WSHD



Biological Assessment of Iowa’s Wadeable Streams Biological Index Results 

A3-6 

SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO 

REGION 
SITE 
TYPE 

476607 MUD CREEK DOWNSTREAM OF DURANT WWTP 
OUTFALL 

MUSCATINE 47F-RLP WSHD

476608 MUD CREEK UPSTREAM OF DURANT WWTP 
OUTFALL 

MUSCATINE 47F-RLP WSHD

476609 MUD CREEK DOWNSTREAM OF WILTON WWTP 
OUTFALL 

MUSCATINE 47F-RLP WSHD

476610 MUD CREEK UPSTREAM OF WILTON WWTP 
OUTFALL 

MUSCATINE 47F-RLP WSHD

476611 SUGAR CREEK DOWNSTREAM OF HIGHWAY 6 BRIDGE-
- APPROXIMATELY 1 MILE SOUTHEAST 
OF MOSCOW 

MUSCATINE 47F-RLP WSHD

476612 NORTH SKUNK RIVER APPROXIMATELY 3.5 MILES NORTH & 
1/2 MILE EAST OF ROSE HILL 

MAHASKA 47F-RLP CRS 

476613 MUD CREEK CITY OF DURANT STP MIXING ZONE MUSCATINE 47F-RLP WSHD
476701 BEAR CREEK EDEN VALLEY COUNTY PARK-- 

APPROXIMATELY 2 MILES SOUTH & 1/2 
MILE WEST OF BALDWIN 

JACKSON 47F-RLP CRS 

476801 SILVER CREEK APPROXIMATELY 1.25 MILES NORTH & 
1.5 MILES WEST OF DEWITT 

CLINTON 47F-RLP CRS 

476802 BARBER CREEK BARBER CREEK SWMA-- 
APPROXIMATELY 3 MILES SOUTH & 1.5 
MILES EAST OF GRAND MOUND 

CLINTON 47F-RLP CRS 

476803 DEER CREEK APPROXIMATELY 2 MILES NORTH OF 
STUART 

GUTHRIE 47F-RLP CRS 

476804 WEST NODAWAY 
RIVER 

APPROXIMATELY 1 MILE NORTH & 3 
MILES EAST OF GRANT 

CASS 47F-RLP CRS 

476806 LOST CREEK APPROXIMATELY 2.5 MILES NORTH & 
3.5 MILES WEST OF PRINCETON 

SCOTT 47F-RLP CRS 

476807 NORTH RIVER APPROXIMATELY 1.5 MILES SOUTH & 
1/2 MILE WEST OF NORWALK 

WARREN 47F-RLP CRS 

476808 EAST NODAWAY 
RIVER 

HAWLEYVILLE-- APPROXIMATELY 3 
MILES NORTH & 2 MILES WEST OF NEW 
MARKET 

PAGE 47F-RLP CRS 

476809 MIDDLE NODAWAY 
RIVER 

APPROXIMATELY 5 MILES SOUTH & 2 
MILES EAST OF BRIDGEWATER 

ADAIR 47F-RLP CRS 

476810 MUD CREEK APPROXIMATELY 4.5 MILES WEST & 1.5 
MILES NORTH OF BAXTER 

JASPER 47F-RLP CRS 

476811 HONEY CREEK APPROXIMATELY 3 MILES EAST OF 
BEDFORD 

TAYLOR 47F-RLP CRS 

476812 MIDDLE RIVER PAMMEL STATE PARK-- 
APPROXIMATELY 2 MILES SOUTH & 2.5 
MILES WEST OF WINTERSET 

MADISON 47F-RLP CRS 

520401 NORTH CEDAR CREEK PUBLIC ACCESS AREA AT CO. RD X60 
BRIDGE--  APPROX 1/2 MILE UPSTREAM 
FROM CONFL WITH SNY MAGILL 
CREEK 

CLAYTON 52B-PP CRS 

520402 NORTH BEAR CREEK NORTH BEAR CREEK PUBLIC ACCESS 
NEAR HIGHLANDVILLE 

WINNESHIEK 52B-PP CRS 

520403 PAINT CREEK YELLOW RIVER STATE FOREST 
APPROXIMATELY 0.60 MILES 
DOWNSTREAM FROM CONFLUENCE 
WITH LITTLE PAINT CREEK 

ALLAMAKEE 52B-PP CRS 

520501 MIDDLE BEAR CREEK APPROXIMATELY 2.5 MILES NORTH & 
1.5 MILES EAST OF HIGHLANDVILLE 

WINNESHIEK 52B-PP CRS 

520502 CATFISH CREEK SWISS VALLEY DUBUQUE COUNTY 
PARK 

DUBUQUE 52B-PP CRS 

520503 COLDWATER CREEK COLDWATER SPRING SWMA-- 
APPROXIMATELY 2 MILES NORTH & 2 
MILES WEST OF BLUFFTON 

WINNESHIEK 52B-PP CRS 

520504 LITTLE MAQUOKETA 
RIVER 

APPROXIMATELY 1/4 MILE 
DOWNSTREAM FROM TWIN SPRINGS 
ROAD CROSSING-- 6 MILES WEST OF 
DUBUQUE 

DUBUQUE 52B-PP CRS 



Biological Assessment of Iowa’s Wadeable Streams Biological Index Results 

A3-7 

SITE 
NUM. STREAM LOCATION DESCRIPTION COUNTY ECO 

REGION 
SITE 
TYPE 

520601 FRENCH CREEK FRENCH CREEK SWMA-- 
APPROXIMATELY 7 MILES NORTH & 4 
MILES EAST OF WAUKON 

ALLAMAKEE 52B-PP CRS 

520602 TROUT RIVER TROUT RIVER PUBLIC AREA-- 
APPROXIMATELY 7 MILES SOUTH & 
EAST OF DECORAH 

WINNESHIEK 52B-PP CRS 

520701 CANOE CREEK CANOE CREEK SWMA-- 
APPROXIMATELY 1/8 MILE UPSTREAM 
FROM MOUTH-- NE OF DECORAH 

WINNESHIEK 52B-PP CRS 

520801 DIBBLE CREEK APPROXIMATELY 1.5 MILES 
NORTHEAST OF CLERMONT 

FAYETTE 52B-PP CRS 

520802 YELLOW RIVER YELLOW RIVER UNIT/YRSF-- 
APPROXIMATELY 1.5 MILES EAST OF 
ION 

ALLAMAKEE 52B-PP CRS 

720801 PIKE RUN APPROXIMATELY 5 MILES EAST & 1/2 
MILE NORTH OF NICHOLS 

MUSCATINE 72A-
UMRAP 

CRS 

720802 HONEY CREEK APPROXIMATELY 3 MILES SOUTH & 1/4 
MILES WEST OF CONESVILLE 

LOUISA 72A-
UMRAP 

CRS 

 
* Site Type:  CRS = Candidate Reference Site; TEST = Test (impacted) Site; WSHD = 

Watershed Assessment Site.
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21
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SITE NUMBER 
SH SAMPLE 
TYPE* 

SITE TYPE 

ECOREGION 

MHTR 
MHTR 
SCORE 

MHEPT 

MHEPT SCORE 

MHSNTR 

MHSNSTR SCORE 

SHTR 

SHTR SCORE 

SHEPT 

SHEPT SCORE 

P3DOM 

P3DOM SCORE 

PEPT 

PEPT SCORE 

PSCR 

PSCR SCORE 

PCHR 

PCHR SCORE 

BINDX 

BINDX SCORE 

PDFFG 

PDFFG SCORE 

PEPHM 

PEPHM SCORE 

BMIBI 

47
66

04
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

17
 

3.
3 

11
4.

3
0

0.
0

11
.3

5.
1

8.
3

5.
7

70
.3

4.
7

73
.4

 
7.

7 
4.

6
1.

0
19

.7
8.

1
5.

54
5.

4
62

.9
6.

2
9.

8
1.

3
44

47
66

05
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

16
 

3.
1 

7
2.

7
0

0.
0

7.
0

3.
1

5.
0

3.
4

91
.3

1.
4

70
.3

 
7.

4 
1.

0
0.

2
28

.4
7.

2
5.

92
4.

0
64

.9
5.

9
5.

4
0.

7
33

47
66

06
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

20
 

3.
8 

11
4.

2
0

0.
0

8.
5

3.
8

6.
0

4.
1

92
.5

1.
2

57
.8

 
6.

1 
0.

8
0.

2
40

.2
6.

0
5.

84
4.

3
56

.3
7.

3
2.

1
0.

3
34

47
66

07
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

18
 

3.
7 

8
3.

5
1

1.
0

8.
3

4.
3

4.
3

3.
3

86
.3

2.
4

18
.0

 
1.

9 
3.

1
0.

7
54

.9
4.

6
6.

47
2.

0
75

.0
4.

2
4.

7
0.

6
27

47
66

08
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

15
 

3.
1 

7
3.

1
0

0.
0

7.
7

4.
0

4.
7

3.
5

86
.5

2.
3

59
.4

 
6.

2 
0.

5
0.

1
34

.0
6.

7
6.

40
2.

2
51

.2
8.

1
8.

2
1.

1
34

47
66

09
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

20
 

3.
8 

3
1.

2
0

0.
0

7.
0

3.
2

3.
7

2.
5

93
.1

1.
1

10
.5

 
1.

1 
0.

7
0.

1
75

.4
2.

5
5.

96
3.

9
77

.4
3.

8
9.

5
1.

2
20

47
66

10
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

7 
1.

3 
1

0.
4

0
0.

0
7.

7
3.

5
4.

3
2.

9
90

.3
1.

5
17

.3
 

1.
8 

1.
8

0.
4

66
.4

3.
4

5.
97

3.
8

81
.3

3.
1

17
.3

2.
2

20
47

66
11

 
H

D
 

W
SH

D
 

47
F-

R
LP

 
18

 
3.

5 
9

3.
3

1
0.

9
9.

7
4.

3
7.

7
5.

2
79

.7
3.

2
87

.9
 

9.
2 

0.
5

0.
1

11
.1

9.
0

6.
18

3.
0

75
.4

4.
1

11
.4

1.
5

39
47

66
12

 
H

S 
C

R
S 

47
F-

R
LP

 
27

 
5.

2 
12

4.
4

1
0.

9
10

.0
4.

4
8.

3
5.

7
73

.2
4.

3
95

.5
 

10
.0

 
19

.3
4.

3
3.

2
9.

8
5.

50
5.

6
66

.4
5.

6
31

.1
4.

0
53

47
66

13
 

H
D

 
W

SH
D

 
47

F-
R

LP
 

 
 

4.
7

2.
4

0.
3

0.
3

95
.2

0.
8

0.
7 

0.
1 

2.
7

0.
6

56
.3

4.
4

6.
57

1.
6

76
.1

4.
0

0.
7

0.
1

47
67

01
 

H
S 

C
R

S 
47

F-
R

LP
 

40
 

7.
7 

15
6.

2
2

1.
8

13
.3

6.
4

8.
7

6.
1

64
.1

5.
7

74
.5

 
7.

8 
5.

9
1.

3
18

.7
8.

2
5.

13
6.

9
69

.5
5.

1
53

.8
6.

9
58

47
68

01
 

H
S 

C
R

S 
47

F-
R

LP
 

30
 

6.
4 

10
4.

5
2

2.
0

13
.3

7.
2

6.
7

5.
3

71
.0

5.
2

75
.6

 
7.

9 
20

.0
4.

5
1.

4
10

.0
5.

27
6.

4
67

.9
5.

4
6.

4
0.

8
55

47
68

02
 

H
D

 
C

R
S 

47
F-

R
LP

 
27

 
7.

3 
11

6.
3

1
1.

3
12

.0
8.

3
6.

7
6.

9
60

.8
9.

6
75

.5
 

7.
9 

3.
5

0.
8

15
.1

8.
6

5.
54

5.
4

48
.4

8.
6

32
.0

4.
1

63
47

68
03

 
H

S 
C

R
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47
F-

R
LP

 
27

 
7.

8 
13

8.
0

3
4.

1
13

.0
9.

7
9.

0
10

.0
82

.7
4.

6
93

.3
 

9.
8 

2.
6

0.
6

2.
8

9.
8

5.
26

6.
5

47
.7

8.
7

58
.2
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4

72
47

68
04
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18

7.
3

4
3.

6
13

.0
6.
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10
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6.

9
72

.5
4.
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94

.2
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9 

3.
5

0.
8

2.
6

9.
8

4.
68

8.
6

69
.6

5.
1

68
.9
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8

65
47

68
06

 
H

D
 

C
R

S 
47

F-
R
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26
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8 

12
5.

7
2

2.
1

10
.3

5.
8

7.
7

6.
4

76
.5

4.
5

68
.4

 
7.

2 
6.

9
1.

5
29

.3
7.

1
5.

52
5.

5
62

.1
6.

3
40

.3
5.

2
53

47
68

07
 

H
D

 
C
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F-

R
LP

 
21
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0 
8

3.
0

0
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0
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3
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1
7.

3
5.

0
84
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94
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9 

65
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.0
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1
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9

4.
84
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0

65
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8

77
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47
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08
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R
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.0
6.

6
8.

7
5.

9
63
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55
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8
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0
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R
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P 

25
 

5.
8 

11
5.

4
3

3.
3

12
.7

7.
4

7.
3

6.
3

67
.2

6.
5

79
.4

 
8.

3 
11

.0
2.

5
5.

7
9.

5
4.

25
10

.0
67

.5
5.

4
13

.3
1.

7
60

52
04

03
 

H
S 

C
R

S 
52

B
-P

P 
25

 
4.

8 
9

3.
7

6
5.

5
13

.0
6.

2
7.

3
5.

1
63
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68
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1
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39
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82
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1
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5.
9

20
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R
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30
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.0
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4

63
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4
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6 
3.

0
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7
4.

8
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6
5.

12
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65
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25
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B
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P 
35
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7
4.

01
10

.0
32

.4
10
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B
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4
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7
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5
67
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5 
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9.
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43
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6.
0

58
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4
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H

S 
C

R
S 
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B
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P 

38
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24
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9
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.0

48
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7 
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2
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9
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1
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1
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SITE NUMBER 
SH SAMPLE 
TYPE* 

SITE TYPE 

ECOREGION 

MHTR 
MHTR 
SCORE 

MHEPT 

MHEPT SCORE 

MHSNTR 

MHSNSTR SCORE 

SHTR 

SHTR SCORE 

SHEPT 

SHEPT SCORE 

P3DOM 

P3DOM SCORE 

PEPT 

PEPT SCORE 

PSCR 

PSCR SCORE 

PCHR 

PCHR SCORE 

BINDX 

BINDX SCORE 

PDFFG 

PDFFG SCORE 

PEPHM 

PEPHM SCORE 

BMIBI 

52
08

01
 

H
S 

C
R

S 
52

B
-P

P 
41

 
10

.0
 

18
10

.0
8

10
.0

14
.0

10
.0

8.
3

9.
0

59
.8

10
.0

54
.4

 
5.

7 
1.

3
0.

3
26

.3
7.

4
5.

26
6.

4
61

.3
6.

4
31

.3
4.

0
74

52
08

02
 

H
S 

C
R

S 
52

B
-P

P 
34

 
6.

5 
15

5.
6

4
3.

6
12

.7
5.

6
10

.0
6.

8
62

.4
6.

0
83

.6
 

8.
8 

30
.7

6.
9

12
.1

8.
9

4.
29

10
.0

51
.6

8.
1

32
.6

4.
2

67
72

08
01

 
H

D
 

C
R

S 
72

D
-U

M
R

A
P 

31
 

9.
5 

4
2.

6
0

0.
0

11
.0

8.
7

2.
3

2.
8

64
.0

10
.0

8.
8 

0.
9 

0.
0

0.
0

12
.4

8.
8

6.
97

0.
1

70
.8

4.
9

7.
2

0.
9

41
72

08
02

 
H

D
 

C
R

S 
72

D
-U

M
R

A
P 

40
 

9.
9 

13
6.

9
2

2.
4

9.
0

5.
7

5.
7

5.
3

73
.0

5.
9

80
.2

 
8.

4 
2.

8
0.

6
15

.3
8.

6
6.

11
3.

3
55

.7
7.

4
24

.5
3.

1
56

* 
St

an
da

rd
 H

ab
ita

t S
am

pl
e 

Ty
pe

: H
D

=H
es

te
r-

D
en

dy
; H

S=
H

es
s;

 M
=M

is
si

ng
; S

B
=S

ur
be

r. 
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A
pp

en
di

x 
3-

3.
  M

et
ric

 V
al

ue
s a

nd
 F

IB
I S

co
re

s f
ro

m
 1

99
4–

19
98

 S
am

pl
e 

Si
te

s. 
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