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EXECUTIVE SUMMARY 

Aging freeways in North America require increasing amounts of construction and maintenance 

activities. These work activities adversely impact mobility for motorists. A review of existing 

literature found that studies have estimated work zone capacity using different traffic, geometric, 

and work zone characteristics such as lane width, presence of heavy vehicles, driver population, 

weather, and number of closed lanes. However, there is little understanding of how different 

work activities impact traffic. The main goals of this project were to study the cause and effect 

relationship between type of work activity and traffic mobility through a work zone and to 

develop traffic flow characteristic curves using real-world traffic flow and work activity data. 

The use of data-driven tools enables practitioners to incorporate work zone activity impacts in 

their planning, design, and operation of work zones.  

The work zone locations selected for this study were identified from the Regional Mobility 

Report published by the Missouri Department of Transportation (MoDOT). The bimonthly report 

for the St. Louis District chronicles events that significantly affect traffic mobility in the region 

such as work zone activity and other incidents. Eleven work zone locations were identified with 

major and moderate travel time impacts. The selected work zones included a variety of work 

activities related to bridges and pavements. The distribution of work zone locations for Interstate 

highways in the St. Louis District is illustrated in Figure ES.1. 

 
© 2016 Google 

Figure ES.1. Locations of study work zones from the St. Louis region  
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Data on traffic characteristics were collected from fixed traffic sensors distributed over Interstate 

highways in the St. Louis District. Three major types of traffic information were collected for 

individual lanes from each traffic sensor in 30-second windows: traffic volume, speed, and 

occupancy.  

Traffic parameters such as free-flow speed, capacity, speed at capacity, and jam density were 

estimated for the work zone locations. The 85th percentile speed of the traffic stream under low-

flow conditions was used as free-flow speed. Jam density was estimated from flow versus 

density plots, and linear regression was used to create best fit lines for both uncongested and 

congested states. Jam density was estimated as the density at which the regression line for the 

congested state meets the x-axis. Capacity was identified as the higher value of either the 

breakdown flow or pre-recovery discharge flow using the time series plots of speed and flow 

(see Figure ES.2).  

 

 

Figure ES.2. Speed-flow plot in order of time for capacity identification 

For this study, two single-regime models proposed by Li (2008) and Van Aerde (1995) and the 

two-regime model by Gipps (1981) were calibrated using real-world data from the selected work 

zone locations. The speed-flow plots were developed by direction for both work zone and non-

work zone days while plots by lane were developed for work zone days. A goodness of fit test 

was performed to determine the best fit among the three models, and the Van Aerde model was 
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the best fit model for most of the study locations (mean average percent error < 20% for all 

locations). The Gipps and Newell-Franklin models were good fits for a few locations but resulted 

in high errors at other locations. The Gipps model provided a good fit for locations where the 

traffic stream speed was not sensitive to flow in the uncongested regime (i.e., free-flow speed 

and speed at capacity were similar), whereas the Newell-Franklin model provided a good fit for 

locations where the traffic stream speed was sensitive to flow in uncongested regimes. These 

speed-flow models are the mathematical backbone of work zone traffic impact tools that reflect 

work zone activity.  

The reduction factors for free-flow speed and capacity were computed using the work zone and 

non-work zone values obtained from the speed-flow curves for all sites and are shown in Table 

ES.1.  
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Table ES.1. Capacity and free-flow speed reduction factors 

Locations and work 

activity 

Lane closure 

configuration 

Site 

number 

Work Zone Non-work Zone 

Capacity 

reduction 

factor 

(10 = 5/8) 

FFS 

reduction 

factor 

(11 = 6/9) 

Capacity (vph) 

FFS 

(mph) 

Capacity (vph) 

FFS 

(mph) 

Directional 

(all lanes) 

Lane wise 

(all lanes / 

no. lanes) 

Directional 

(all lanes) 

Lane wise 

(all lanes / 

no. lanes) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 

Eastbound I-64 at 

Boone Bridge (work: 

restriping) 

(3,2) (a) 3,414 1,707 65.5 6,012 2,004 66 0.85 0.99 

* Eastbound I-64 at 

Boone Bridge (work: 

bridge work) 

(3,2) (b) 3,172 1,586 59.4 6,012 2,004 66 0.79 0.90 

Eastbound I-64 from 

Chesterfield Parkway 

to I-270 (work: paving 

operations) 

(3,2) (c) 3,540 1,770 66.3 5,748 1,916 67.5 0.92 0.98 

Eastbound I-70 at 

Foristell (work: 

pavement repair) 

(2,1) (d) 1,380 1,380 65 3,360 1,680 67 0.82 0.97 

Westbound I-70 at 

Foristell (work:  paving 

operations) 

(2,1) (e) 1,560 1,560 67 3,360 1,680 67 0.93 1.00 

Eastbound I-270 from 

McDonnell Boulevard 

to Route 367(work: 

bridge work) 

(4,2) (f) 3,408 1,704 55 7,212 1,803 62.7 0.95 0.88 

Westbound I-270 from 

I-170 to 367 (work: 

pavement work) 

(3,2) (g) 3,720 1,860 69.7 5,976 1,992 70.2 0.93 0.99 

Eastbound I-44 at I-

270 (Meramec Bridge) 

(work: bridge work) 

(3,2) (h) 3,372 1,686 61 5,304 1,768 70.7 0.95 0.86 

Westbound I-44 (work: 

resurfacing) 
(3,2) (i) 2,520 1,260 55 5,584 1,861 70.5 0.68 0.78 

Eastbound I-44 at 

Hampton (work: bridge 

rehabilitation) 

(4,2) (j) 3,624 1,812 57.8 7,872 1,968 62 0.92 0.93 
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The results show that all work zone activities in the study sample had an adverse effect on 

capacity and free-flow speed. The range of reduction factors for capacity and free-flow speed, 

shown in Table ES.1, can be extensive, depending on the nature of work and lane closure 

configurations. The capacity reduction factor for work zone conditions was found to be in the 

range of 0.68 to 0.95 while the free-flow speed reduction factor was found to be in the range of 

0.78 to 1.0. 

Further analysis was conducted for bridge-related and pavement-related work activities. A 

comparison of the speed-flow plots for bridge and pavement activities for three lane closure 

configurations is shown in Figure ES.3.  
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Figure ES.3. Comparison of speed-flow plots for bridge- and pavement-related activities 

for (3,2), (2,1), and (4,2) lane drop configurations 

The variation in capacity values was found to be much lower for bridge-related work than 

pavement-related work. The higher variation in the capacity values for the pavement-related 

work may be due to the wider range of activities that are cataloged as pavement-related work in 

the MoDOT database. In terms of capacity, the (4,2) configuration experienced the lowest 

capacity while the (2,1) configuration experienced the highest capacity.  
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1 

1. INTRODUCTION 

All types of work zones have adverse impacts of some kind on traffic. The magnitude of the 

impact, however, varies from one work zone to another based on a variety of factors. These 

factors include geographical differences, demand differences (daily traffic volumes, hourly 

distribution of traffic), type of work activity, capacity reductions, and lane closure 

configurations. Existing traffic impact analysis tools are capable of incorporating the demand 

and geometric effects of work zones. However, there is limited understanding of how work 

activity type influences traffic operations in work zones.  

This project takes a step toward understanding the relationship between work activity type and 

traffic flow characteristics. The effects of work activity are explored using three different traffic 

flow measures: (1) traffic speed versus flow curves, (2) capacity reduction factors, and (3) free-

flow speed (FFS) reduction factors. Many traffic impact analysis tools, such as Quick Zone and 

custom spreadsheets, rely on hourly traffic volumes and capacity values (normal conditions and 

restricted conditions) as input to determine queue length and delay in work zones. These 

analytical tools incorporated the methodology for estimating delay and queue length from the 

2010 edition of the Highway Capacity Manual (HCM) (TRB 2010). The 2010 edition of the 

HCM does not have speed-flow curves specifically developed for work zone conditions, let alone 

different work activities. The 2016 edition of the HCM does include an extension to the 

methodology for development of speed-flow curves. The new version includes adjustment 

factors for free-flow speed and capacity of work zones based on various geometric factors, but it 

lacks specific guidance on how work activity effects can be incorporated. By addressing this gap 

in existing knowledge, this research helps to develop future guidance for the HCM work zone 

methodology.  

The remaining chapters of the report are structured as follows: Chapter 2 contains a brief 

literature review of the state of practice of traffic flow characteristics related to work zones. 

Chapter 3 contains descriptions of the study location and data used in this study. Chapter 4 

describes the overall methodology adopted in this study, followed by descriptions of various 

methods applied to quantify traffic flow characteristics in work zone locations. Chapter 5 

presents the estimation of traffic parameters and calibration of macroscopic speed-flow models. 

The chapter also offers a comparison between the work zone and non-work zone day speed-flow 

diagram. Finally, Chapter 6 presents the conclusions and summarizes the results. 
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2. LITERATURE REVIEW 

A literature review was conducted to gain insight into the state of the existing knowledge 

regarding work zone capacity. The sources reviewed included research studies, the 2010 and 

2016 version of the HCM, and other resources. 

2.1 Research Studies on Work Zone Capacity 

2.1.1 Work Zone Capacity Adjustment Factors 

In some previous studies, work zone capacity adjustment factors were developed to account for 

the presence of work zone activity. A multiplicative capacity model based on data from six 

freeway reconstruction work zones in Ontario, Canada, was developed by Al-Kaisy and Hall 

(2003). Several factors were considered, including proportion of heavy vehicles, driver 

population, work activity, side of lane closure, rain, light condition, and non-additive interactive 

effects. Only one of the six sites had sufficient data to estimate work zone capacity based on 

construction activity. The capacity drop due to work zone activity ranged from 1.85 percent to 

12.5 percent. The developed model included an adjustment factor of 0.93 for the presence of 

work activity at the construction site. 

In a study by Elefteriadou et al. (2007), work zone capacity models were developed using 

simulations for three work zone merge configurations: two lanes to one lane, three lanes to two 

lanes, and three lanes to one lane. Both planning and operational models were developed for 

each of the three configurations. Work zone intensity was taken into account through a 

rubbernecking factor that was based on the study by Al-Kaisy and Hall (2003). 

In research undertaken by Heaslip et al. (2009), a methodology was developed to estimate 

freeway work zone capacity using both simulation and field data collected from an Interstate 

freeway work zone in Jacksonville, Florida. Three work zone lane closure configurations were 

studied: two-to-one, three-to-two, and three-to-one. Work zone activity was incorporated through 

the use of a rubbernecking factor. However, this factor was not derived from the field data but 

was instead based on the values determined by Al-Kaisy and Hall (2003). 

In a study by Krammes and Lopez (1994), new capacity values for short-term freeway work zone 

lane closures were developed using data from 33 freeway work zones. Five different lane closure 

configurations were investigated: three lanes to one lane, two lanes to one lane, four lanes to two 

lanes, five lanes to three lanes, and four lanes to three lanes. Most of these work zones involved 

maintenance activities. The study recommended a base work zone capacity value of 1,600 

passenger cars/per hour/per lane (pcphpl). The authors suggested that this value should be 

adjusted for heavy vehicles, presence of ramps, and type and intensity of work activity. The 

recommended adjustment for type and intensity of work activity adjustment varies from -160 to 

160 pcphpl. As indicated by Krammes and Lopez (1994), these adjustment values represent 

general guidance since a more definitive relationship could not be determined from the data. 
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2.1.2 Work Zone Activity Levels 

The effects of work zone activity on work zone capacity have been investigated by several 

researchers through the use of qualitative activity level variables. For example, work zone 

capacity values were developed by Dixon et al. (1996) based on data from 24 freeway work 

zones in North Carolina. Four different lane closure scenarios were studied. Variables that were 

evaluated included nighttime versus daytime construction, work zone intensity, work zone 

proximity to active lanes, and work zone proximity to interchanges. Work zone intensity was 

categorized as heavy, moderate, or light. The study found that rural work zone capacity was 

lower at the activity area than at the end of the transition area. 

In a study by Jiang (1999), traffic flow characteristics for freeway work zones were investigated 

utilizing a sample of four Interstate work zones in Indiana. Two configurations were included in 

the research: a single-lane closure in one direction and a crossover. Work zone intensity was 

characterized by three levels: medium, nonadjacent, and high. The mean work zone capacities 

for the three levels of work intensity were found to be statistically equal. 

Through research undertaken by Kim et al. (2001), a multiple regression model to estimate work 

zone capacity was developed using data collected from 12 work zone sites. The configuration 

studied involved lane closures on four lanes in one direction. Intensity of work activity was 

investigated through use of dummy variables for medium intensity and heavy intensity. The 

dummy variable for heavy intensity was included in the final model. Other variables in the model 

included number of closed lanes, location of closed lanes, proportion of heavy vehicles, lateral 

distance to open lanes, work zone length, and work zone grade. 

Grey correlation analysis and multivariate linear regression were utilized by Li et al. (2013) to 

develop a model for work zone capacity. Intensity of work activity was investigated through use 

of dummy variables for medium intensity and heavy intensity. The dummy variable for medium 

intensity was found to be a significant variable in the model. The model also included variables 

for number of open lanes, speed, proportion of heavy vehicles, lateral distance to the open lanes, 

work zone length, time of day, location of closed lanes, and grade. 

The effects of construction activity and intensity on the capacity of rural freeway work zones 

were investigated by Luna and Mohammedi (2014) using field and sensor data from a long-term 

Interstate work zone. Two categories of work zone intensity (light construction and heavy 

construction) were studied based on the number of personnel in the work zone. The study found 

that heavy construction activity led to a reduction in capacity. 

In a study by Zheng et al. (2011), several different work zone capacity prediction models were 

compared, including the HCM model, two multi-linear regression models, and a fuzzy logic- 

based artificial neural network model. The models were evaluated using traffic and work zone 

data from Dutch freeways. The study found that the neuro-fuzzy model was the most accurate. 

Work intensity was considered through either an adjustment factor applied to the capacity or a 

dummy variable representing the work zone intensity level. 
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2.1.3 Regression Models 

In a study by Benekohal et al. (2004), a methodology for estimating operating speed and capacity 

in work zones was developed based on data collected from 11 work zones that included the 

closure of one lane. A relationship between speed reduction and work intensity was developed. 

Work intensity was quantified based on the number of workers in the active work area, amount 

of equipment in the work area, and distance between the active work area and open lane. The 

methodology used the HCM speed reductions for narrow lane width and lateral clearance. 

2.1.4 Site-Specific Studies 

Several studies have investigated work zone capacity at specific sites but have not investigated 

the effects of work zone activity on capacity. Data from two lane closures at the same 

construction site in Toronto, Ontario, were used by Al-Kaisy et al. (2000) to investigate freeway 

capacity. Several factors were studied, including temporal variation, grade, day of the week, and 

weather conditions. Although there was considerable variation in freeway capacity over the four 

days of data collection, the values developed were relatively close to the values predicted by the 

2010 edition of the HCM (TRB 2010).  

Historical detector data from two urban freeway work zones in Milwaukee, Wisconsin, were 

used to analyze work zone capacity in a study by Notbohm et al. (2009). The first work zone 

involved the use of two separate tapers to go from four lanes to two lanes, while the second work 

zone was a two-lane-to-one-lane merge. The capacity values determined during the morning 

peak were 2,100 vehicles per hour per lane (vphpl) for the four-lane-to-two-lane case and 1,900 

vphpl for the two-lane-to-one-lane case. The study recommended that capacity for urban long-

term work zones should be determined based on throughputs observed over several hours. 

In a study by Venugopal and Tarko (2001), capacity models for rural freeways were developed 

based on data from a 15-mile Interstate work zone in Indiana. The work zone utilized a lane drop 

from two lanes to one lane and included high intensity activity such as pavement rehabilitation 

and resurfacing. The study found that rainfall, heavy vehicles, police presence, and the presence 

of an innovative traffic control system called the Indiana Lane Merge System (ILMS) reduced 

the work zone capacity. The type of lane drop (left or right) was also investigated but was not 

found to affect capacity significantly.  

The capacity of bidirectional eight-lane urban expressways was estimated by Shao and Chen 

(2010) using both field data from five work zone sites in China and simulation. The study found 

that the work zone capacity varied between 1,500 vphpl and 1,700 vphpl. The simulation portion 

of the study evaluated three different lane closure configurations: four lanes to one lane, four 

lanes to two lanes, and four lanes to three lanes. The study did not consider the effects of work 

zone intensity, work zone length, or work zone configuration. 
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2.1.5 Inconclusive Results for Work Zone Activity and Capacity 

In some studies, the effects of work zone activity on work zone capacity were investigated, but a 

relationship could not be found due to limitations of the data. In a study by Dudek and Richards 

(1981), freeway work zone capacity was investigated through use of data from 28 maintenance 

and construction work zones in Houston and Dallas, Texas. The following lane closure 

configurations were studied: three lanes to one lane, two lanes to one lane, five lanes to two 

lanes, four lanes to two lanes, three lanes to two lanes, and four lanes to three lanes. Capacity 

values were developed for different types of work, such as bridge repair, asphalt removal, patch 

and overlay, shoulder repair, pavement repair, freeway widening, concrete median barrier 

installation, and resurfacing. However, a relationship between work zone capacity and the type 

of work could not be developed due to data limitations. Other factors such as presence of on-

ramps and off-ramps, grades, alignment, and percentage of trucks were not considered in the 

study.  

In research by Sarasua et al. (2004), a model was developed for short-term work zone capacity 

for Interstate work zones in South Carolina. Data were collected from 22 work zone sites during 

a 12-month period. The sites included various types of work such as paving, median cable 

guardrail, rumble strips, bridge maintenance, and barrier wall erection. The final model included 

a base value of 1,460 pcphpl adjusted by the proportion of heavy vehicles and number of lanes. 

The authors investigated the effects of work zone type through use of a dummy variable for high 

activity. However, the variable was not statistically significant. It was determined that the sample 

size was not sufficient to make any conclusions regarding the effects of work zone activity, 

intensity, and length on work zone capacity. 

2.1.6 Arterial Work Zone Capacity 

While most of the existing research has focused on freeway work zone capacity, there have been 

some studies pertaining to arterial work zone capacity. As part of a study by Hawkins et al. 

(1992), the capacity of an arterial lane closure was estimated using video data collected from an 

urban study site in Arlington, Texas. The results indicated that the work zone capacity for the 

arterial lane closure was less than the work zone capacity for a freeway lane closure with similar 

geometric characteristics. A table of estimated work zone capacities for lane closures on urban 

arterials was developed based on these results. In another study by Elefteriadou (2008), arterial 

work zone capacity was investigated using simulation. Five regression equations were developed 

to predict arterial work zone capacity for lane groups based on different lane configurations: the 

capacity of two lanes with no left turns allowed, the capacity of two lanes with one left turn lane 

and one through/right lane, and the capacity of left turns, through/right turns, and the approach 

for arterials with three to six lanes. Several factors were found to affect the arterial work zone 

capacity, including the percentage of left-turning vehicles, the distance between the work zone 

and the nearest downstream intersection, the ratio of green time to cycle length, and the ratio of 

the number of open lanes to the total number of lanes. 
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2.1.7 Other Studies 

In other research studies, various aspects of work zone capacity were investigated, but the effects 

of work zone activity on work zone capacity were not quantified. In research by Maze et al. 

(2000), the capacity of an Interstate work zone in Iowa was measured using field data collection. 

The work zone included a lane closure. The results indicated that the capacities ranged from 

1,400 to 1,600 pcphpl. The type or intensity of work zone activity was not explicitly considered 

in this study. Using Missouri field data, three different methods for computing work zone 

capacity were compared by Edara et al. (2012): maximum sustained flow, rescaled cumulative 

flow curves, and 85th percentile flow. The most conservative capacity estimates were found 

using the queue discharge flow values. The study also included a survey of state departments of 

transportation (DOTs), which found that 30 percent of respondents considered work zone 

intensity in estimating work zone capacity while 74 percent considered the work zone 

configuration. In another study by Chatterjee et al. (2009), a method was developed to determine 

driver behavior parameters in Vissim that correspond with work zone capacities. Two merging 

cases in an early-merge system were studied: two lanes to one lane and three lanes to two lanes. 

Two car-following model parameters and one lane changing parameter were estimated.  

2.1.8 Summary of Existing Literature 

Table 2.1 summarizes the key findings from the existing literature. 

Table 2.1 Summary of key findings from literature 

Reference Summary of Findings 

Al-Kaisy and Hall 

2003 
 Multiplicative work zone capacity model developed from field data 

 Mean queue discharge rate considered as capacity 

 Factors affecting work zone capacity 

 Percentage of heavy vehicles 

 Driver population  

 Light conditions 

 Work zone configuration 

 Weather conditions 

 Work activity  

 Adjustment factor of 0.93 for presence of work zone activity 
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Reference Summary of Findings 

Al-Kaisy et al. 2000  Investigated the capacity at work zones with long-term closures using 

field data 

 Mean queue discharge flow rate considered as capacity 

 Factors affecting work zone capacity 

 Temporal variation 

 Grade 

 Day of week 

 Weather conditions 

 Results reasonably close to the 2010 HCM values 

 Work zone activity not considered 

Benekohal et al. 2004  Developed methodology for work zone capacity using field data 

 Based on reductions in vehicle speed 

 Factors considered 

 Work intensity 

 Lane width 

 Lateral clearance 

 Quantification of work zone intensity 

 Number of workers in active work area 

 Amount of equipment in work area 

 Distance between active work area and open lane 

Chatterjee et al. 2009  Defined various sets of driving behavior parameters in microscopic 

simulation software Vissim for work zone capacity estimation 

 Estimated two car-following model parameters and one lane changing 

parameter for Vissim 

 Work zone activity not considered  

Dixon et al. 1996  Investigated freeway work zone capacity using field data 

 Based on flow rate at which traffic switches from uncongested to queued 

 Factors considered 

 Time of day 

 Work zone intensity 

 Work zone proximity to active lanes 

 Work zone proximity to interchanges 

 Categorization of work zone intensity 

 Heavy 

 Moderate 

 Light 

 Importance of both collapse volume and queue discharge values 
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Reference Summary of Findings 

Dudek and Richards 

1981 
 Investigated freeway work zone capacity using field data 

 Developed capacity values for different types of work 

 Bridge repair 

 Asphalt removal 

 Patch and overlay 

 Shoulder repair 

 Pavement repair 

 Freeway widening 

 Concrete median installation 

 Resurfacing 

 Unable to determine relationship between work zone capacity and type 

of work 

Edara et al. 2012  Estimated capacity of short-term work zones using three methods 

 Maximum sustained flow 

 Rescaled cumulative flow curves (queue discharge flow)  

 85th percentile of flow 

 Most conservative estimation of capacity from queue discharge flow  

 Survey of state DOTs 

 30 percent consider work zone intensity when estimating work zone 

capacity 

 74 percent consider work zone configuration  

Elefteriadou et al. 

2007 
 Developed freeway work zone capacity models using simulation 

 Developed both planning and operational models 

 Work zone intensity incorporated through rubbernecking factor from Al-

Kaisy and Hall (2003) 

Elefteriadou et al. 

2008 
 Developed arterial work zone capacity models using simulation 

 Significant factors affecting work zone capacity 

 Percentage of left-turning vehicles 

 Distance between work zone and nearest downstream intersection 

 Ratio of green time to cycle length 

 Ratio of number of open lanes to total number of lanes 

 Work zone activity not considered 

Hawkins et al. 1992  Estimated work zone capacity for lane closure on urban arterial using 

field data 

 Arterial work zone capacity less than freeway work zone capacity 

 Provided table of values for arterial work zone capacity 

 Work zone activity not considered 
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Reference Summary of Findings 

Heaslip et al. 2009  Developed models and procedures for estimating freeway work zone 

capacity using both simulation and field data 

 Significant factors affecting work zone capacity 

 Heavy vehicles 

 Presence of work zone activity 

 Location of upstream warning sign 

 Lane distribution 

 Speed 

 Lane width 

 Lateral clearance 

 Lighting 

 Driver population 

 Weather 

 Presence of ramps 

 Work zone intensity incorporated through rubbernecking factor from Al-

Kaisy and Hall (2003) 

Jiang 1999  Estimated freeway work zone capacity for both single-lane closure and 

crossover using field data  

 Defined capacity as flow just before the significant decrease in speed 

 Mean queue discharge flow rates were less than capacity 

 Categorization of work zone intensity 

 Medium 

 Non-adjacent 

 High 

 Mean work zone capacities for all work intensity categories statistically 

equal 

Kim et al. 2001  Developed multiple regression model for freeway work zone capacity 

using field data 

 Significant factors affecting work zone capacity 

 Number of closed lanes 

 Location of closed lanes 

 Proportion of heavy vehicles 

 Lateral distance to open lanes 

 Work zone length 

 Work zone grade 

 Heavy work zone intensity 

 Categorization of work zone intensity 

 Medium 

 Heavy 



10 

Reference Summary of Findings 

Krammes and Lopez 

1994 
 Developed capacity values for short-term freeway work zone lane 

closures using field data 

 Base work zone capacity measured as 1,600 pcphpl 

 Adjustments for work zone capacity 

 Intensity of work activity 

 Heavy vehicles 

 Presence of ramps 

 Adjustment for intensity of work varies -160 to +160 pcphpl 

 Factors affecting work zone intensity adjustment 

 Number of workers 

 Size of equipment 

 Presence of flaggers 

 Noise and dust levels 

 Type of work 

 Location of work activity  

Li et al. 2013  Used grey correlation and multivariate linear regression to develop 

model for freeway work zone capacity based on data from Kim et al. 

(2001) 

 Significant factors affecting capacity 

 Number of open lanes 

 Speed 

 Proportion of heavy vehicles 

 Number of closed lanes 

 Lateral distance to the open lanes 

 Work zone length 

 Time of day 

 Location of closed lanes 

 Grade 

 Medium work intensity 

 Categorization of work zone intensity 

 Medium 

 Heavy 

Luna and Mohammedi 

2014 
 Investigated effects of construction activity and intensity on capacity of 

rural freeway work zones using field and sensor data  

 Categorization of work zone intensity 

 Light 

 Heavy 

 Heavy construction activity led to capacity reduction 
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Reference Summary of Findings 

Maze et al. 2000  Estimated capacity of a rural Iowa freeway work zone using field data 

 Capacity defined as the average of ten highest values of flow 

immediately before and after queuing conditions 

 Estimated capacity of rural Iowa work zone varied from 1,400 to 1,600 

pcphpl 

 Work zone activity not considered  

Notbohm et al. 2009  Analyzed urban freeway work zone capacity using historical detector 

data from two work zones 

 Work zone capacity calculated as maximum hourly volume counted  

 Morning peak capacity values 2,100 vphpl (four-lane to two-lane) and 

1,900 vphpl (two-lane to one-lane)  

 Work zone activity not considered 

Sarasua et al. 2004  Developed model for short-term freeway work zone capacity from field 

data 

 Capacity of work zone determined from speed-flow relationship 

 Base capacity 1,460 pcphpl 

 Adjustment factors 

 Proportion of heavy vehicles 

 Number of lanes 

 High work zone activity investigated but found to be not statistically 

significant 

Shao and Chen 2010  Estimated capacity for eight-lane urban expressway work zones using 

both field data and simulation 

 Work zone capacity defined as saturation flow rate 

 Range of capacity values (four-lane to two-lane) 1,500 to 1,700 vphpl 

 Regression models for speed and flow developed 

 Work zone activity not considered  

Venugopal and Tarko 

2001 
 Developed additive and multiplicative capacity prediction models for 

rural freeway work zones capacity 

 Base values 1,433 vphpl (additive) and 1,320 vphpl (multiplicative) 

 Significant factors affecting capacity 

 Rainfall 

 Percentage of heavy vehicles 

 Police presence 

 Presence of Indiana Lane Merge System (ILMS) 

 Work zone activity not considered 
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Reference Summary of Findings 

Zheng et al. 2011  Compared several different work zone capacity prediction models using 

field data 

 HCM model 

 Two multi-linear regression models 

 Fuzzy logic based artificial neural network model 

 Neuro-fuzzy model most accurate 

 Work intensity considerations 

 Adjustment factor 

 Use of dummy variable 

 

2.2 Current Practice of Work Zone Capacity Estimation (2010 HCM) 

The 2010 HCM (TRB 2010) provides some guidance regarding the estimation of work zone 

capacity. In this manual, work zones are divided into two types based on work activity and 

nature of barriers used: 

1. Short-term work zone lane closures, usually for maintenance (standard channeling devices 

such as traffic cones, drums, etc.) 

2. Long-term work zone lane closures, usually for construction (portable concrete barriers) 

2.2.1 Capacity of Short-Term Work Zones  

Based on the study performed by Krammes and Lopez (1994), the capacity of short-term 

freeway work zones is measured as 1,600 pcphpl for all lane closure configurations. However, 

the base value of capacity is adjusted based on factors such as the intensity of work activity, 

effect of heavy vehicles, and presence of ramps. 

2.2.1.1 Intensity of Work Activity 

The intensity of work activity is calculated by using an index derived from factors for the 

number of workers, size of equipment, presence of flaggers, and noise and dust level at the site 

(Krammes and Lopez 1994). 

Studies cited in the 1985 HCM (TRB 1985) and Dudek et al. (1981) reported that work zone 

capacity decreased with increased intensity of work activity. The studies also reported that mean 

speeds of traffic streams decreased as work activities were moved closer to the travel lane. Table 

2.2, which is derived from the 1985 HCM, shows capacity values for various lane closure 

configurations and types of activity.  
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Table 2.2. Work zone capacity (vphpl) variation by lane closure configuration and type of 

work  

Type of Work 

Lane Closure Configuration (Normal, Open) 

[3,1] [2,1] [5,2] [4 or 3,2] [4,3] 

Median Barrier/Guardrail  

Installation/Repair 
-- 1,500 -- 

1,600 

(1,470) 

1,600 

(1,523) 

Pavement Repair 1,050 1,400 -- 
1,500 

(1,450) 
1,500 

Resurfacing, Asphalt 

Removal 
1,050 

1,200 

(1,300) 

-- 

(1,375) 

1,300 

(1,450) 
1,333 

Striping, Slide Removal -- 1,200 -- 1,300 1,333 

Pavement Markers -- 1,100 -- 1,200 1,200 

Bridge Repair 
-- 

(1,350) 

-- 

(1,350) 
-- 1,100 1,133 

Source: TRB 1985 

According to the 2010 HCM (TRB 2010), the recommended adjustment for work activity is 

within the range of approximately +/- 10 percent of 1,600 pcphpl. This recommendation stems 

from the study conducted by Krammes and Lopez (1994) and is illustrated in Figure 2.1.  

 
Krammes and Lopez 1994, Transportation Research Record: Journal of the Transportation Research Board 

Figure 2.1. Short-term freeway work zone lane closure capacity 

2.2.1.2 Effect of Heavy Vehicles 

The HCM recommends that a heavy vehicle factor be incorporated to adjust capacity since the 

base value of capacity is given in terms of pcphpl (TRB 2010). The heavy vehicle factor is 

calculated based on the formula in the HCM manual for basic freeway segments.  
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2.2.1.3 Presence of Ramps 

The presence of entrance ramps within the taper area or just immediately downstream of the 

beginning of the full lane closure has an adverse effect on work zone capacity. The vehicles from 

the ramp will try to force their way into the mainline traffic stream, resulting in a reduction of 

upstream main lane queue discharge. Additional capacity reduction can arise because of the 

added turbulence in the merge area.  

The HCM also recommends that the on-ramp be located at least 1,500 ft upstream of the 

beginning of the lane closure. However, if this distance allowance is not possible, either the ramp 

volume should be added to the mainline volume or the capacity of the work zone should be 

decreased by the ramp volume up to one-half of the capacity of one open lane through the work 

zone.  

2.2.1.4 Calculation of Estimated Work Zone Capacity 

Work zone capacity is calculated using the following equation (TRB 2010): 

c = (1,600 pcphpl + I - R) × H × N (2.1) 

where 

c = estimated work zone capacity (vph) 

I = adjustment for type and intensity of work activity (pcphpl) 

R = adjustment for presence of ramps (pcphpl) 

H = heavy vehicle adjustment factor (vehicles/passenger car) 

N = number of lanes open through work zone 

To review, the recommended values for the base capacity and the various adjustments are as 

follows: 

I = range (-160 to + 160 pcphpl), depending on type, intensity, and location of work activity 

R = minimum of average entrance ramp volume in pcphpl during lane closure period for ramps 

located within channelizing taper or within 152 m (500 ft) downstream of the beginning of full 

lane closure, or one-half of capacity of one lane open through work zone (i.e., 1,600 pcphpl/2N) 
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H = various percentages of heavy vehicles and passenger car equivalents, given in the 2010 

HCM 

2.2.2 Capacity of Long-Term Work Zones  

The capacities of long-term work zones vary greatly and depend on various site-specific 

characteristics. Table 2.3 summarizes how capacities vary for different locations and lane 

configurations. The HCM recommends that capacity be estimated based on local data and 

experience. In the absence of data, the values shown in Table 2.3 can be used.  

Table 2.3. Capacity of long-term work zones (vphpl) 

State 

Normal Lanes to Reduced Lanes 

2 to 1 3 to 2 3 to 1 4 to 3 4 to 2 4 to 1 

TX 1,340  1,170    

NC 1,690  1,640    

CT 1,500–1,800  1,500–1,800    

MO 1,240 1,430 960 1,480 1,420  

NV 1,375–1,400  1,375–1,400    

OR 1,400–1,600  1,400–1,600    

SC 950  950    

WA 1,350  1,450    

WI 1,560–1,900  1,600–2,000  1,800-2,100  

FL 1,800  1,800    

VA 1,300 1,300 1,300 1,300 1,300 1,300 

IA 1,400–1,600 1,400–1,600 1,400–1,600 1,400–1,600 1,400–1,600 1,400–1,600 

MA 1,340 1,490 1,170 1,520 1,480 1,170 

Default 1,400 1,450 1,450 1,500 1,450 1,350 

Source: Adapted from Chatterjee et al. 2010 

2.2.3 2010 HCM Enhancements  

A study by Zegeer et al. (2014) included some enhancements to the 2010 HCM work zone 

capacity methodology. In the first enhancement, a method was developed to modify the 

discharge rate from a signalized intersection on an urban street due to the presence of an incident 

or work zone lane closure downstream. For freeway work zones, a table extrapolating the 2010 

HCM values to freeway work zones with five moving lanes was developed as shown in Table 

2.4.  
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Table 2.4. Work zone capacity and minimum free-flow speed adjustment factors for 

freeway work zones 

Work Zone Minimum Allowable Free-Flow Speed Adjustment Factors 

Lanes 

Open CAF 

55 mph 

(2,250 

pcphpl) 

60 mph 

(2,300 

pcphpl) 

65 mph 

(2,350 

pcphpl) 

70 mph 

(2,400 

pcphpl) 

75 mph 

(2,400 

pcphpl) 

1 0.68 0.60 0.56 0.53 0.50 0.47 

2 0.70 0.62 0.58 0.55 0.52 0.49 

3 0.72 0.64 0.60 0.57 0.54 0.50 

4 0.74 0.66 0.62 0.58 0.55 0.52 

5 0.77 0.68 0.64 0.60 0.57 0.53 

Note: The minimum allowable free-flow speed adjustment factors are according to base free-flow and base capacity. 

CAF = capacity adjustment factor 

Source: Zegeer et al. 2014 

2.3 2016 HCM Method for Work Zone Capacity Calculations 

In the 2016 HCM (TRB 2016), the capacity of the work zone is estimated in terms of queue 

discharge rate (congested conditions). This rate is convenient and is easier to measure than direct 

estimation from pre-breakdown capacity (maximum sustainable flow rate before breakdown). 

The work zone capacity is estimated from the following relationship:  

Work zone capacity =  Cwz  =
Mean queue discharge rate ( QDR)

100−α
  (2.2) 

where  

α = Percentage drop in pre-breakdown capacity at the work zone due to queue conditions. In the 

absence of field data, 13.4 percent can be used for α for freeway work zones.  

2.3.1 Estimation of Queue Discharge Rate 

There are many factors such as lane closure configuration, type of barrier, land use type, lateral 

distance between barrier and edge of travel lane, time of the day, etc., which can affect the queue 

discharge rate. To estimate the queue discharge rate, all of the aforementioned factors need to be 

considered. The relationship among the factors and queue discharge rate is stated below: 

QDRwz = 2093 - (154 × f LCSI) - (194 × f Br) - (179 × f A) + (9 × f LAT) - (59 × f DN)  (2.3) 

where    

QDRwz = work zone queue discharge rate (pcphpl) 
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f LCSI  = lane closure severity index 

f Br = barrier type (0 = concrete and hard barrier separation, 1 = cone, plastic drum, or other soft 

barrier separation) 

f A = area type (0 = urban areas with high development densities or concentrations of population, 

1 = rural areas with widely scattered development and low housing and employment densities) 

f LAT = lateral distance from the edge of travel lane adjacent to the work zone to the barrier, 

barricades, or cones (0 to 12 ft) 

f DN = daylight/night (0 = daylight, 1 = night) 

The lane closure severity index, which is a function of lane closure configuration, can be 

estimated from Table 2.5: 

Table 2.5. Lane closure severity index  

Total Number 

of Lane(s) 

Total Number 

of Lane(s) Open Ratio f LCSI 

3 3 1.00 0.33 

2 2 1.00 0.50 

4 3 0.75 0.44 

3 2 0.67 0.75 

4 2 0.50 1.00 

2 1 0.50 2.00 

3 1 0.33 3.00 

4 1 0.25 4.00 

Source: TRB 2016 

2.3.2 Estimation of Free-Flow Speed 

The free-flow speeds in work zones are observed to be less than the free-flow speeds in non-

work zone segments. Factors such as lane closure, intensity of work, and the number of ramps 

present upstream or downstream of the work zone can reduce the free-flow speed. Free-flow 

speeds for work zones can be estimated by using the following formula, which incorporates the 

effects of several factors associated with work zone speeds (TRB 2016): 

FFSwz = 9.95 + (33.49 × f Sr) + (0.53 × f S) – (5.60 × f LCSI) – (3.84 × f Br) –  

(1.71 × f DN) – (1.45 × f Nr)  (2.4) 

where 
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FFSwz = work zone free-flow speed (mph) 

f Sr = speed ratio (decimal), i.e., the ratio of non-work zone speed limit to work zone speed limit 

f S = work zone speed limit (mph) 

f LCSI = lane closure severity index 

f Br = barrier type (0 = concrete and hard barrier separation, 1 = cone, plastic drum, or other soft 

barrier separation) 

f DN = daylight/night (0 = daylight, 1 = night) 

f Nr = number of on-ramps and off-ramps within three miles upstream and downstream of the 

work zone area 

2.3.3 Speed-Flow Model Development for Work Zones 

The generalized speed-flow curve used in both the 2010 HCM and 2016 HCM suggests that for 

low and medium flow rates, the decrease in speed is negligible. As flow continues to increase, 

speed decreases significantly before capacity is reached. The speed-flow model of work zones 

can be built by performing the following steps: 

1. The vehicular traffic flow should be converted to equivalent passenger car traffic by using 

the formula suggested by the HCM for basic freeway segments.  

2. The break point between the straight and curved segments should be estimated by using the 

following equation (TRB 2016): 

BP = [1000 + 40 × (75 – FFS wz) × CAF
2
  (2.5) 

where 

FFS wz = free-flow speed of the work zone (mph)  

CAF = capacity adjustment factor (ratio of work zone capacity to freeway base section capacity)  

3. The curved segment can be estimated for any flow level (vp) greater than break point by 

using the following formula (TRB 2016):  

𝑆 = 𝐹𝐹𝑆𝑤𝑧 −
(𝐹𝐹𝑆𝑤𝑧 − 

𝐶𝑤𝑧
45

) (𝑣 𝑝  − 𝐵𝑃) 2

(𝐶𝑊𝑍 − 𝐵𝑃)2
 (2.6) 
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The representative figure of the work zone speed-flow model is depicted in Figure 2.2. 

 
HCM, TRB 2016 

Figure 2.2. Representative work zone speed-flow model 

2.4 Other Existing Guidance 

Some DOTs provide guidance regarding work zone capacity. For example, the Massachusetts 

Department of Transportation (MassDOT) design guide (MassDOT 2006) provides a table with 

expected vehicle capacities based on the number of lanes and number of closed lanes, as shown 

in Table 2.6. 

Table 2.6. Work zone capacities from MassDOT design guide  

Number of Lanes Estimated Capacity 

Normally open 

During 

construction 

Vehicles per 

hour per lane 

Total vehicles 

per hour 

2 1 1,340 1,340 

3 2 1,490 2,980 

3 1 1,170 1,170 

4 3 1,520 4,560 

4 2 1,480 2,980 

4 1 1,170 1,170 

Source: Adapted from MassDOT 2006 

The work zone guidelines from the Missouri Department of Transportation (MoDOT) also 

present some information regarding work zone capacities (MoDOT 2004). According to the 

MoDOT guide, the maximum traffic capacity for a freeway with two lanes in each direction and 

one closed lane is 1,240 vphpl. The MoDOT guide also indicates that the estimated work zone 

capacity for a multi-lane roadway is approximately 1,000 vphpl. MoDOT recommends that 

mitigation strategies to reduce congestion in work zones for two-lane roadways should be 
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considered when volumes reach 600 vphpl. The MoDOT guide includes a table of estimated 

work zone capacities for various scenarios, as shown in Table 2.7. 

Table 2.7. Work zone capacities from MoDOT design guide  

Interstate and Freeway Lane 

Conditions Capacity Restrictions Cautionary Zone 

Total 

number of 

lanes 

Number of 

open lanes 

Vehicles per 

hour per 

lane 

Total 

capacity in 

open lanes 

Vehicles per 

hour per 

lane 

Total 

capacity in 

open lanes 

3 1 960 960 750 750 

2 1 1,240 1,240 1,000 1,000 

5 2 1,320 2,640 1,000 2,000 

4 2 1,420 2,840 1,100 2,200 

3 2 1,430 2,860 1,100 2,200 

4 3 1,480 4,440 1,100 3,300 

Source: MoDOT 2004 
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3. STUDY AREA AND DATA COLLECTION 

The goal of this study was to evaluate the impacts on traffic due to various work activities in 

work zones. The type of work and lane closure configuration can significantly influence traffic 

mobility in a work zone. To capture the impacts of different work activities and lane closure 

configurations on traffic, Interstate freeways in the St. Louis District of MoDOT were selected 

for study. The St. Louis District contains six Interstate freeways: I-44, I-55, I-64, I-70, I-170, and 

I-270, connecting most of the regional highways. The traffic flow characteristics data for 

Interstate highways were collected using a combination of sensor and probe data. The University 

of Missouri, with MoDOT’s permission, has access to real-time traffic data throughout the state 

of Missouri. Probe-based speed and travel time data are available via the Regional Integrated 

Transportation Information System (RITIS) and Nokia HERE (a map application). Point-based 

sensor data of traffic flow variables are also available for different regions in the state based on 

sensor coverage. For example, coverage in the St. Louis region is extensive, with nearly 700 

sensors deployed on freeways and arterials. The geographical distribution of fixed traffic sensors 

for all Interstate highways in the St. Louis District is illustrated in Figure 3.1. 

 
© 2016 Google 

Figure 3.1. Geographical distribution of fixed traffic sensors for all Interstate highways in 

the St. Louis District 
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3.1. Identification of Work Zone Locations 

The work zone locations selected for this study were identified from the bimonthly Regional 

Mobility Report published by MoDOT. The report for the St. Louis District records the events 

that significantly affect traffic mobility for the specified months. The events, such as work zones 

and accidents, that cause significant impacts on mobility are recorded with relevant information. 

Based on travel time, the impacts of work zones in the report are classified as major, moderate, 

and minor. The major- and moderate-impact work zones have more than 10 minutes additional 

travel time. For this study, major- and moderate-impact work zones were selected because traffic 

conditions ranging from free-flow to below capacity can be experienced in these work zones. 

The classification of work zones observed in a bimonthly report is shown in Table 3.1.  

Table 3.1. Classification of work zones observed in two months 

May 2015 June 2015 

Level of Travel 

Time Impact 

Number of Work 

Zones 

Level of Travel 

Time Impact 

Number of Work 

Zones 

Major Impact 0 Major Impact 1 

Moderate Impact 1 Moderate Impact 1 

Minor Impact 240 Minor Impact 300 

Total 241 Total 302 

Source: MoDOT 2015–2016 

The report also includes information about the route, location, date, and type of work for the 

work zones with major and moderate impacts. A sample of the reported information is illustrated 

in Figure 3.2.  



23 

 
MoDOT 2015–2016 

Figure 3.2. Information related to route, location, date, and type of work for the work 

zones  

The mobility reports were available from January 2015 through August 2016 during the time of 

work zone activity data collection. So, the mobility reports from January 2015 through August 

2016 were reviewed, and 11 work zone locations were identified with major and moderate 

impacts on travel time. Details of the work zone locations, along with the work activities, are 

listed in Table 3.2 and illustrated in Figure 3.3. 
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Table 3.2. Details of the work zone locations 

No. Location Work description 

Lane closure 

configuration (total 

no. of lanes, no. of 

open lanes) 

1. Eastbound I-64 at Boone Bridge restriping (3,2) 

2. Eastbound I-64 at Boone Bridge bridge work (3,2) 

3. Westbound I-64 at Boone Bridge 
bridge demolition 

preparation 
(3,2) 

4. 
Eastbound I-64 from  

Chesterfield Parkway to I-270 
paving operations (3,2) 

5. Eastbound I-70 at Foristell pavement repair (2,1) 

6. Westbound I-70 at Foristell paving operations (2,1) 

7. 
Eastbound I-270 from McDonnell 

Boulevard to Route 367 
bridge work (4,2) 

8. 
Westbound I-270 from  

I-170 to 367 
pavement work (3,2) 

9. 
Eastbound I-44 at I-270 (Meramec 

Bridge) 
bridge work (3,2) 

10. Westbound I-44 resurfacing (3,2) 

11. Eastbound I-44 at Hampton bridge rehabilitation (4,2) 

 

 
© 2016 Google 

Figure 3.3. Geographical distribution of work zone locations for all Interstate highways in 

the St. Louis District 
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3.2. Identification of Work Zone Segments 

In some cases, the bimonthly Regional Mobility Report is not sufficient to identify the exact 

work zone segments because it only mentions the locations with nearby routes or landmarks. To 

identify the exact segments, the Missouri Analytics application in RITIS was used. The Missouri 

Analytics application has historical information about work zones and other bottlenecks. The 

application shares information such as location of segment, maximum queue length, congestion, 

and total duration in the form of tables and maps. Location information from Missouri Analytics 

can be checked on a sensor deployment map (Figure 3.1), and sensors affected by work zone 

activities can be identified. Identification of one of the work zone locations on I-64 (the major 

impact work zone in Figure 3.2) with the help of Missouri Analytics is shown in Figure 3.4.  

 
RITIS (Missouri Analytics), University of Maryland CATT Lab 

Figure 3.4. Identification of work zone segment at I-64 Boone Bridge 

To identify the work zone, basic information such as route, location, date, and type of work were 

collected from the bimonthly Regional Mobility Report (Figure 3.2). Then, information such as 

date, road, and region were used as inputs for the Missouri Analytics application to query 

information related to the location, length, and duration of the bottleneck. After the location was 

identified in the sensor deployment map (Figure 3.1), the sensors affected by the bottleneck were 

identified. 

3.3. Traffic Data Collection 

Three major types of traffic information are collected regularly for individual lanes from each 

traffic sensor in a 30-second window: traffic volume, speed, and occupancy. The collected traffic 

information is transmitted in real time to a MoDOT database in extensible markup language 
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(XML) format. Figure 3.5 provides screenshots showing traffic sensor information and a 

segment of an XML file.  

   

Figure 3.5. Traffic sensor information (left) and XML feed detector information (right) 

The traffic sensor information (left side of Figure 3.5) consists of eight fields: detector ID (traffic 

sensor ID), street name, designation, travel way name, direction, longitude, latitude, and log-

mile. The right side of Figure 3.5 shows specific detector information in XML format: date, time 

(in 30-second intervals), agency, detector ID, lane number, lane status, traffic volume, 

occupancy, and speed.  



27 

4. METHODOLOGY 

The methodology used to develop speed-flow plots is depicted in the Figure 4.1. 

 

Figure 4.1. Study methodology 

4.1. Identification of Work Zone Time 

In many cases, the work zones were in place for less than a day. In those cases, it was important 

to identify work zone hours so that data from non-work zone times could be eliminated from the 

work zone analysis. After identifying the specific day of the work zone from the mobility report, 

work zone hours were identified by plotting traffic count data by lane. Work zone hours were 
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determined based on time periods in which there was no traffic in at least one lane while other 

lanes were operating normally. The identification process is illustrated in Figure 4.2 using 

sample data from a work zone on I-70 near the city of Foristell. The segment is a two-lane 

Interstate, and one of the lanes was closed overnight. The lane was opened at 5:18 a.m., which 

separates work zone time from non-work zone time in the same day, indicating the end of work 

zone time. The lane closed again at 8:15 p.m. (which is not shown in the figure), indicating the 

beginning of work zone activity. 

 

Figure 4.2. Identification of work zone time at I-70 near Foristell  

4.2. Aggregation of Speed-Flow Data 

After identification of the work zone time, the 30-second speed and flow data from the detectors 

were aggregated into 5-minute intervals. A study conducted by Lorenz and Elefteriadou (2001) 

showed that for longer periods (5 or 15 min), the breakdown probability at a higher flow rate is 

substantially higher, while for short periods (1 min), the probability is low for all range of flows 

(low and high). So, a 5-minute interval was considered to be reasonable for aggregation to 

capture measures of traffic flow characteristics. The flow is estimated by aggregating the 30-

second counts to 5-minute counts and then converting the results to an hourly flow. The 

corresponding speed is estimated by taking the weighted average of the 30-second speed data. A 

general equation for the volume and speed processing is presented below.  

𝑉𝑜𝑙𝑢𝑚𝑒𝑡 = ∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑖 × 12𝑛
𝑖=1  (4.1) 

𝑆𝑝𝑒𝑒𝑑𝑡 =
∑ (𝑣𝑜𝑙𝑢𝑚𝑒𝑖 × 𝑠𝑝𝑒𝑒𝑑𝑖)𝑛

𝑖=1

∑ 𝑣𝑜𝑙𝑢𝑚𝑒𝑖
𝑛
𝑖=1

 (4.2) 

where  
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n =10 (since 30-second data is aggregated into 5 minutes) 

4.3. Estimation of Traffic Flow Characteristics 

4.3.1. Free-Flow Speed  

Free-flow speed is the mean speed of passenger cars under low-density conditions. The most 

accurate method for estimating segment free-flow speed is to measure it in the field during 

uncongested flow conditions (under 800 vphpl, according to the 2010 HCM). Hou et al. (2013) 

used the 85th percentile speed as a measure to evaluate the effectiveness of posted speed limits 

for short-term Interstate work zones. For this study, the 85th percentile speed of the traffic 

stream under low-flow conditions was considered to be the free-flow speed.  

4.3.2. Capacity and Speed at Capacity 

In much of the existing literature, capacity is defined based on breakdown flow or queue 

discharge flow. Some researchers define capacity as the traffic flow breakdown point. The 

breakdown point is the traffic flow just before a significant drop in speed followed by low speeds 

sustained for some time and fluctuating traffic flow rate (Jiang 1999, Dong and Mahmassani 

2009, Heaslip et al. 2009), while others define capacity based on queue discharge flow (Al-Kaisy 

et al. 2000, Al-Kaisy and Hall 2003, Benekohal et al. 2004). Elefteriadou and Lertworawanich 

(2003) found that the magnitude of breakdown flows is almost always lower than that of 

discharge flows prior to recovery to non-congested conditions. 

To identify capacity in this study, speed and flow data were plotted in order of time. The process 

was carried out for all work zone locations on both work zone and non-work zone days. The 

plots show that higher flow could occur either at breakdown or prior to recovery to non-

congested conditions. In most cases, the breakdown flow is found to be higher. So, to prevent 

underestimation, the higher value of either the breakdown flow or the discharge flow before 

recovery was designated as capacity. The mean queue discharge rates in the study locations were 

lower than the work zone capacities. The identification of capacity values is illustrated in Figures 

4.3.1 and 4.3.2 with time series plots for two selected work zone locations. Figure 4.3.1 shows 

the scenario when breakdown flow is higher than recovery flow, while the opposite scenario is 

shown in Figure 4.3.2. 
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Figure 4.3.1. Speed-flow plot in order of time for capacity identification when breakdown 

flow is higher than recovery flow 

 

Figure 4.3.2. Speed-flow plot in order of time for capacity identification when breakdown 

flow is lower than recovery flow 

Speed at capacity can also be identified from the time series plot of speed and flow. The speed at 

capacity, at breakdown, and at recovery delineates the uncongested and congested conditions. 
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4.3.3 Jam Density 

After the identification of capacity and speed at capacity, field data points can be split into 

uncongested and congested conditions. A flow versus density plot was developed using field data 

points of the locations in this study. Linear regression was used to create best fit lines for both 

uncongested and congested conditions (Kianfar and Edara 2013, Dervisoglu et al. 2009). From 

field data points, it is difficult to estimate jam density due to the sparseness of data near jam 

condition. So, jam density can be estimated from the regression line for the congested state. The 

intersection of the x-axis with the regression line represents jam density for the location. Figure 

4.4 shows the flow-density plot and jam density estimation for a work zone location at I-64 

Boone Bridge. 

 

Figure 4.4. Creating flow-density diagram for work zone at I-64 Boone Bridge 

4.4 Calibration of Traffic Stream Models with Macroscopic Sensor Data 

4.4.1 Speed-Flow Models 

Over the years, different approaches, such as empirical studies, hydrodynamic analogies, and 

car-following theories, have been used to develop speed-flow models. Traffic flow models can 

be broadly classified based on their functional forms. Single-regime functions can represent 

different traffic states with a continuous function while multi-regime functions address different 

traffic states with different equations. One tradeoff between the single- and multi-regime 

functions is simplicity versus the ability to capture multiple traffic states more accurately.  

For this study, two single-regime models proposed by Li (2008) and Van Aerde (1995) and the 

two-regime model by Gipps (1981) were considered, and the models were calibrated with real-

world data from 11 selected work zone locations. These three models were used because 
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previous literature (Burris and Patil 2008, Brilon and Lohoff 2011, Rakha 2009, Rakha and Gao 

2010, Rakha et al. 2007) found that these three models were applicable to various traffic 

scenarios.  

4.4.2 Van Aerde Model 

The Van Aerde model is a four-parameter car-following model, which combines the well-known 

Pipes and Greenshields models (Rakha and Crowther 2002). The generalized form proposed by 

Van Aerde was  

h n = 𝑐1  +  𝑐3 𝑢𝑛  +
𝑐2

𝑢𝑓 − 𝑢𝑛 
  (4.3) 

 where 

h n = the spacing (km) of vehicle n  

 𝑢𝑛 = the speed of vehicle n (km/h)  

 𝑢𝑓 = the facility free-flow speed (km/h)  

 𝑐1= fixed spacing constant (km)  

 𝑐2 = variable spacing constant (km
2
/h) 

 𝑐3= variable
 
spacing constant (h) 

Rakha (2009) developed a procedure for the calibration of the four input parameters using real-

world loop detector data. The macroscopic flow and speed relation derived from the model is 

shown below:   

q = 
𝑢

𝑐1+ 
𝑐2

𝑢𝑓 − 𝑢 
 +𝑐3u 

 (4.4) 

where 

q = flow rate of traffic stream 

u = speed of traffic stream  
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The insertion of four parameters into the model as input provides a high degree of flexibility in 

capturing various human and geometric characteristics. However, the inclusion of many 

parameters in the function also results in a complicated speed-flow relationship. 

4.4.3 Gipps Model 

The Gipps model is a two-stage model with an assumption that stream speed is insensitive to 

density in the uncongested state. The functional form of the model (Gipps 1981), including 

safety margin to driver’s reaction time, is  

𝑢𝑛 (𝑡 + 𝑇) = 3.6 [−𝑏𝑇 + √𝑏2𝑇2 + 𝑏 {2[𝑠𝑛(𝑡) −  𝐿𝑛−1] −  
𝑢𝑛(𝑡)

3.6
𝑇 +  

𝑢𝑛−1 𝑡2

3.62∗ 𝑏′}]  (4.5) 

where 

b and 𝑏′ = deceleration parameters of vehicle n (m/s
2
) 

𝐿𝑛−1 = the effective length of vehicle (m) 

𝑠𝑛 (t) = spacing between vehicle n and n-1 at time t (m)  

𝑢𝑛−1 (𝑡) = speed of the preceding vehicle (km/h) 

T = driver’s reaction time  

Wilson (2001) presented a simplified form of the steady state Gipps car-following model as  

𝑠 =  𝑠𝑗 +
1

2.4
 𝑇𝑢 +  

1

25.92 𝑏
 (1 −  

𝑏

𝑏′) 𝑢2 (4.6) 

Rakha et al. (2007) demonstrated a macroscopic speed-flow relationship based on the Gipps car-

following model as  

𝑞 =  
1000 𝑢

𝑠𝑗+
1

2.4
 𝑇𝑢+ 

1

25.92 𝑏
 (1− 

𝑏

𝑏′) 𝑢2
  (4.7) 

where 

𝑇 = 2.4 (
1000

𝑞𝑐
−  

1000

𝑘𝑗𝑢𝑐
− 

𝑢𝑐

25.92 𝑏
 (1 −

𝑏

𝑏′))       (4.8) 
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4.4.4 Re-specified Newell-Franklin Model 

Li (2008) re-specified the traditional Newell-Franklin model (Newell 1961) by replacing jam 

density and kinematic wave speed with capacity and speed at capacity. The proposed generalized 

form is illustrated below: 

𝑞 =  𝑞𝑜  (
𝑢

𝑢𝑐
) (1 −  

1

𝛽
ln

𝑢𝑓−𝑢

𝑢𝑓−𝑢𝑐
)

−1

 (4.9) 

where  

𝛽 =
𝑢𝑐

(𝑢𝑓−𝑢𝑐)
 (4.10) 

𝑞𝑜 = capacity 

𝑢𝑐 = speed at capacity 

𝑢𝑓 = free-flow speed 

The model follows the standard practice specified by the HCM of using 𝑞𝑜 ,  𝑢𝑐, and 𝑢𝑓 to 

develop speed-flow plots and provides a good fit for uncongested conditions. 

4.5 Goodness of Fit 

The three traffic models, Li, Van Aerde, and Gipps, were evaluated using goodness of fit 

measures. In other words, how close were the model estimations to the observed field data? 

Mean absolute percentage error (MAPE) and root mean square error (RMSE) served as the 

goodness of fit measures. MAPE uses percentages, which are easy to understand without 

requiring any insights into the units of variables. The RMSE uses the same units as the variable 

of interest. Both measures are commonly used for evaluating model performance.  

4.5.1. Mean Absolute Percentage Error (MAPE) 

MAPE (Hyndman and Koehler 2006) describes the fit of a model in terms of a percentage and is 

defined as 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝐴𝑐𝑡𝑢𝑎𝑙−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝐴𝑐𝑡𝑢𝑎𝑙
|𝑁

𝑖=1  (4.10) 

where  
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N is the total number of observations 

The Lewis scale (Lewis 1982), a popular scale used to define MAPE levels for error evaluation 

and interpretation in different fields, categorizes estimation accuracy using the following MAPE 

levels: 

 Less than 10% – highly accurate 

 11% to 20% – good 

 21% to 50% – reasonable 

 51% or more – inaccurate 

4.5.2. Root Mean Square Error (RMSE) 

RMSE (Hyndman and Koehler 2006) describes the fit of a model in terms of standard deviation 

of residuals and is defined as  

𝑅𝑀𝑆𝐸 = √∑ (𝐴𝑐𝑡𝑢𝑎𝑙−𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2𝑁
𝑖=1

𝑁
  (4.11) 

where  

N is the total number of observations 
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5. DEVELOPMENT OF SPEED-FLOW CURVES 

Speed-flow models for work zone locations were developed both by lane and direction.  

5.1. Speed-Flow Relationship by Direction 

To estimate the impacts of work activity in work zones on the overall traffic flow characteristics 

of roadway segments, speed-flow plots based on directional traffic were developed. The plots 

were developed for both work zone days and non-work zone days to determine the reduction in 

capacity and free-flow speed of a roadway segment due to work activity. Since all work zones 

were selected for moderate or major impact on travel time, traffic conditions ranging from free-

flow condition to below capacity condition were captured in all selected locations. To capture a 

full range of traffic flow characteristics for non-work zone days, speed-flow data were queried 

for up to 30 days before work activity and plotted as shown in Figure 5.1. 

 

Figure 5.1. Sample of speed-flow plots for non-work zone days in a work zone location 
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As shown in Figure 5.1, capacity was observed for the location on the third, fourth, fifth, sixth, 

and seventh days before the work zone was deployed. The shape of the speed-flow plots and 

capacity values was consistent for all days. A similar approach was applied to all selected work 

zone locations to develop speed-flow plots. 

5.1.1. Calibration of Traffic Stream Models with Field Data 

All three of the selected traffic stream models were calibrated with field data to test their 

performance for varying geometric and traffic scenarios. The plots for traffic stream models for 

selected work zone locations are illustrated in Figures 5.2.1 to 5.2.11. For each location, the type 

of work and the lane closure configuration are indicated in the figure label. For example, a (3,2) 

means a lane reduction from three lanes to two lanes.  
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Non-work zone day  

  
Work zone day 

Figure 5.2.1. Fitting traffic stream models for Eastbound I-64 at Boone Bridge (restriping, 

3,2) 
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Non-work zone day  

   
Work zone day 

Figure 5.2.2. Fitting traffic stream models for Eastbound I-64 at Boone Bridge (bridge 

work, 3,2) 
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Non-work zone day  

  
Work zone day 

Figure 5.2.3. Fitting traffic stream models for Westbound I-64 at Boone Bridge (bridge 

demolition preparation, 3,2)   
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Non-work zone day  

  
Work zone day 

Figure 5.2.4. Fitting traffic stream models for Eastbound I-64 from Chesterfield Parkway 

to I-270 (paving operations, 3,2)  
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Non-work zone day  

  
Work zone day 

Figure 5.2.5. Fitting traffic stream models for Eastbound I-70 at Foristell (pavement repair, 

2,1) 
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Non-work zone day  

 
Work zone day 

Figure 5.2.6. Fitting traffic stream models for Westbound I-70 at Foristell (paving 

operations, 2,1) 
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Non-work zone day  

 
Work zone day 

Figure 5.2.7. Fitting traffic stream models for Eastbound I-270 from McDonnell Boulevard 

to Route 367 (bridge work, 4,2) 
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Non-work zone day 

 
Work zone day 

Figure 5.2.8. Fitting traffic stream models for Westbound I-270 from I-170 to Route 367 

(pavement work, 3,2) 

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000

Sp
e

e
d

 (
m

p
h

) 

Flow (veh/h/direction) 

Gipps' model

Van Aerde

Newell-Franklin

Field data

0

10

20

30

40

50

60

70

80

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Sp
e

e
d

 (
m

p
h

) 

Flow (veh/h/direction) 

Gipps' model

Van Aerde

Newell-Franklin

Field data



46 

 
Non-work zone day 

 
Work zone day 

Figure 5.2.9. Fitting traffic stream models for Eastbound I-44 at I-270 (Meramec Bridge) 

(bridge work, 3,2) 
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Non-work zone day 

 
Work zone day 

Figure 5.2.10 Fitting traffic stream models for Westbound I-44 (resurfacing, 3,2) 
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Non-work zone day 

 
Work zone day 

Figure 5.2.11. Fitting traffic stream models for Eastbound I-44 at Hampton (bridge 

rehabilitation, 4,2) 
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5.1.2. Goodness of Fit Test 

To determine the model with the best fit from among the three selected traffic stream models, a 

goodness of fit test was performed. Goodness of fit statistics, as summarized in Table 5.1, 

showed that the Van Aerde model is the best fit model for most of the study locations (MAPE < 

20% for all locations). The Gipps and Newell-Franklin models fit well for a few locations but fit 

poorly in other locations. The Gipps model provides a reasonable fit for locations where the 

traffic stream speed is not sensitive to flow in the uncongested regime, whereas the Newell-

Franklin model provides a good fit for locations where the traffic stream speed is sensitive to 

flow in uncongested regimes. Since the Van Aerde model fits well with the field data for all 

traffic scenarios, all speed-flow plots developed with the Van Aerde model were analyzed 

further. 
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Table 5.1. Goodness of fit statistics 

Location 

Traffic Characteristics RMSE and MAPE 

Capacity, 

veh/h/direction 

(lane wise in 

parenthesis, 

vphpl) 

FFS 

(mph) 

Speed at 

Capacity 

(mph) 

Kj, 

veh/mile/ 

direction 

Van 

Aerde Gipps 

Newell-

Franklin 

Eastbound I-64 at Boone Bridge 

(work: restriping) 

3,414 

(1,707) 
65.5 57.53 

280 

(140) 

5.02213 

(7.85%) 

6.725286 

(9.03%) 

7.401302 

(12.26%) 

Eastbound I-64 at Boone Bridge 

(work: bridge work) 

3,172 

(1,586) 
59.42 53 

430 

(215) 

4.721195 

(9.25%) 

5.713379 

(10.83%) 

10.03836 

(21.19%) 

Westbound I-64 at Boone Bridge 

(work: bridge demolition 

preparation) 

2,532 

(1,266) 
70.75 66.50 

380 

(190) 

6.686216 

(15.65%) 

6.812487 

(16.46%) 

21.13868 

(60.84%) 

Eastbound I-64 from Chesterfield 

Parkway to I-270 (work: paving 

operations) 

3,540 

(1,770) 
66.32 60 

475 

(238) 

4.436011 

(6.41%) 

5.456148 

(7.32%) 

8.770458 

(10.65%) 

Eastbound I-70 at Foristell (work: 

pavement repair) 

1,380 

(1,380) 
65 41 

115 

(115) 

7.143565 

(14.69%) 

9.095556 

(19.64%) 

6.469169 

(12.25%) 

Westbound I-70 at Foristell 

(work: paving operations) 

1,560 

(1,560) 
67 60.5 

100 

(100) 

7.736523 

(15.12%) 

6.614910 

(14.21%) 

9.649916 

(29.42%) 

Eastbound I-270 from McDonnell 

Boulevard to Route 367 (work: 

bridge work) 

3,408 

(1,704) 
55 43 

520 

(260) 

6.745994 

(19.23%) 

10.76114 

(33.21%) 

9.795803 

(34.56%) 

Westbound I-270 from I-170 to 

367 (work: pavement work) 

3,720 

(1,860) 
69.68 60.04 

450 

(225) 

6.168564 

(10.36%) 

8.794558 

(14.42%) 

8.913963 

(16.09%) 

Eastbound I-44 at I-270 

(Meramec Bridge) (work: bridge 

work) 

3,372 

(1,686) 
61 45 

560 

(280) 

7.40334 

(10.85%) 

7.841082 

(13.03%) 

7.0456 

(10.56%) 

Westbound I-44 (work: 

resurfacing) 

2,520 

(1,260) 
55 48.276 

550 

(275) 

8.534911 

(19.01%) 

9.644866 

(22.87%) 

11.36845 

(30.95%) 

Eastbound I-44 at Hampton 

(work: bridge rehabilitation) 

3,624 

(1,812) 
57.80 36 

250 

(125) 

9.874358 

(19.66%) 

13.72484 

(29.70%) 

10.1343 

(20.19%) 
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5.1.3 Comparison of Work Zone and Non-Work Zone Day Speed-Flow Plot 

Reductions in capacity and free-flow speed from normal conditions due to different activities in 

work zones were estimated by comparing corresponding speed-flow curves. Work zone day and 

non-work zone day plots were developed by direction while considering all lanes together. The 

work zone and non-work zone day plots cannot be compared directly because the work zone plot 

accounts for reductions in capacity due to lane closure. For comparison purposes, the speed-flow 

plots by direction were scaled down to plots by lane by dividing all flow values by the 

corresponding number of lanes. The comparisons of normal day to work zone day speed-flow 

curves are illustrated in Figures 5.3.1 to 5.3.11. 

 

Figure 5.3.1. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-64 at Boone Bridge (restriping, 3,2) 
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Figure 5.3.2. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-64 at Boone Bridge (bridge work, 3,2) 

 

 Figure 5.3.3. Comparison of work zone versus non-work zone day speed-flow plots for 

Westbound I-64 at Boone Bridge (bridge demolition preparation, 3,2) 
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Figure 5.3.4. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-64 from Chesterfield Parkway to I-270 (paving operations, 3,2) 

 

Figure 5.3.5. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-70 at Foristell (pavement repair, 2,1) 
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Figure 5.3.6. Comparison of work zone versus non-work zone day speed-flow plots for 

Westbound I-70 at Foristell (paving operations, 2,1) 

 

Figure 5.3.7. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-270 from McDonnell Boulevard to Route 36 (bridge work, 4,2) 
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Figure 5.3.8. Comparison of work zone versus non-work zone day speed-flow plots for 

Westbound I-270 from I-170 to 367 (pavement work, 3,2) 

 

Figure 5.3.9. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-44 at I-270 (Meramec Bridge) (bridge work, 3,2) 
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Figure 5.3.10. Comparison of work zone versus non-work zone day speed-flow plots for 

Westbound I-44 (resurfacing, 3,2) 

 

Figure 5.3.11. Comparison of work zone versus non-work zone day speed-flow plots for 

Eastbound I-44 at Hampton (bridge rehabilitation, 4,2) 
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Figures 5.3.1 to 5.3.11 show that work zone activities have an adverse effect on capacity and 

free-flow speed. The reduction in free-flow speed and capacity can be estimated from the figures 

to quantify the impact of work zone activities. The results are summarized in Table 5.2. 
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Table 5.2. Capacity and free-flow speed reduction factors  

Locations 

Closure 

configuration 

Work zone day Non-work zone day 

Capacity 

reduction 

factor 

(9 = 4/7) 

FFS 

reduction 

factor 

(10 = 5/8) 

Capacity (vph) 

FFS 

(mph) 

Capacity (vph) 

FFS 

(mph) 

Directional 

(all lanes) 

Lane wise (all 

lanes/no. of 

lanes) 

Directional 

(all lanes) 

Lane wise (all 

lanes/no. of 

lanes) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Eastbound I-64 at Boone 

Bridge (work: restriping) 
(3,2) 3414 1707 65.5 6012 2004 66 0.85 0.99 

Eastbound I-64 at Boone 

Bridge (work: bridge work) 
(3,2) 3172 1586 59.42 6012 2004 66 0.79 0.90 

Westbound I-64 at Boone 

Bridge (work: bridge 

demolition preparation) 

(3,2) 2532 1266 70.75 5040 1680 73 0.75 0.97 

Eastbound I-64 from 

Chesterfield Parkway to I-

270 (work: paving 

operations) 

(3,2) 3540 1770 66.32 5748 1916 67.46 0.92 0.98 

Eastbound I-70 at Foristell 

(work: pavement repair) 
(2,1) 1380 1380 65 3360 1680 67 0.82 0.97 

Westbound I-70 at Foristell 

(work: paving operations) 
(2,1) 1560 1560 67 3360 1680 67 0.93 1.00 

Eastbound I-270 from 

McDonnell Boulevard to 

Route 367(work: bridge 

work) 

(4,2) 3408 1704 55 7212 1803 62.67 0.95 0.88 

Westbound I-270 from I-170 

to 367 (work: pavement 

work) 

(3,2) 3720 1860 69.68 5976 1992 70.16 0.93 0.99 

Eastbound I-44 at I-270 

(Meramec Bridge) (work: 

bridge work) 

(3,2) 3372 1686 61 5304 1768 70.7 0.95 0.86 

Westbound I-44 (work: 

resurfacing) 
(3,2) 

2520 

 

1260 

 

55 

 
5584 1861 70.45 0.68 0.78 

Eastbound I-44 at Hampton 

(work: bridge rehabilitation) 
(4,2) 3624 1812 57.80 7872 1968 62.03 0.92 0.93 
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5.2. Speed-Flow Relationship by Lane 

The lane adjacent to the work activity was considered for the development of speed-flow curves. 

The developed plots for selected work zone locations are illustrated in Figures 5.4.1. to 5.4.11.  

 

Figure 5.4.1. Speed-flow plot for Eastbound I-64 at Boone Bridge (restriping, 3,2) 

 

Figure 5.4.2. Speed-flow plot for Eastbound I-64 at Boone Bridge (bridge work, 3,2) 
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Figure 5.4.3. Speed-flow plot for Westbound I-64 at Boone Bridge (bridge demolition 

preparation, 3,2)  

 

Figure 5.4.4. Speed-flow plot for Eastbound I-64 from Chesterfield Parkway to I-270 

(paving operations, 3,2) 
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Figure 5.4.5. Speed-flow plot for Eastbound I-70 at Foristell (pavement repair, 2,1) 

 

Figure 5.4.6. Speed-flow plot for Westbound I-70 at Foristell (paving operations, 2,1) 
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Figure 5.4.7. Speed-flow plot for Eastbound I-270 from McDonnell Boulevard to Route 367 

(bridge work, 4,2) 

 

Figure 5.4.8. Speed-flow plot for Westbound I-270 from I-170 to Route 367 (pavement 

work, 3,2) 
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Figure 5.4.9. Speed-flow plot for Eastbound I-44 at I-270 (Meramec Bridge) (bridge work, 

3,2) 

 

Figure 5.4.10. Speed-flow plot for Westbound I-44 (resurfacing, 3,2) 
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Figure 5.4.11. Speed-flow plot for Eastbound I-44 at Hampton (bridge rehabilitation, 4,2) 
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Table 5.3. Work activities related to bridges and pavements 

Bridge-Related Work Pavement-Related Work 

Bridge maintenance, Bridge reconstruction, 

Bridge flushing, Joint/Crack sealing, 

Chip seal overlay, Cinder seal overlay, Concrete 

barrier wall, Concrete overlay, Core drilling, 

Culvert replacement, Diamond grinding, Fog 

seal, Grooving drive surface, Guard rail/Cable 

work, intersection improvement, 

Lighting/Signal/Sign work, Median or 

Shoulder, Microsurfacing, Milling drive 

surface, Mowing, New pavement construction, 

Patching drive surface, Pavement marking, 

Pavement repair, Pavement striping, Permit or 

utility work, Railroad maintenance, Resurfacing 

pavement, Road mix overlay, Roadside work, 

Scrub sealing pavement, Seal coat overlay, 

Shoulder work, Sweeping pavement, 

Undersealing    

 

For comparison purposes, speed-flow curves developed for all selected locations were merged 

into these two groups. It was found that of the 11 selected locations, six were associated with 

bridge-related work while the remaining 5 were associated with pavement-related work. The 

comparison of speed-flow plots among study locations for bridge- and pavement-related 

activities is illustrated in Figures 5.5.1. and 5.5.2. 

 

Figure 5.5.1. Speed-flow plot for pavement-related activities 
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Figure 5.5.2. Speed-flow plot for bridge-related activities 
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Figure 5.6.1. Speed-flow plot for bridge-related activities for (3,2) configuration 

 

Figure 5.6.2. Speed-flow plot for pavement-related activities for (3,2) configuration 
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which is incompatible with the bridge- and pavement-related work activities described above. 

Because of this incompatibility, the plot was dropped from further analysis.  

From Figures 5.6.1 and 5.6.2, it can be seen that the variation in capacity value is much lower for 

bridge-related work than pavement-related work. There are only a few types of activities for 

bridge-related work (from Table 5.3), and this may be the reason for the low variance in capacity 

values (1,488 to 1,656 vphpl). In contrast, the pavement-related work includes a wide range of 

activities (from Table 5.3), and that may be the reason for higher variation in capacity values 

(1,120 to 1,728 vphpl).  

To compare speed-flow plots of bridge- and pavement-related activities for the (3,2) 

configuration, representative curves for both work activity groups were developed. To develop a 

representative curve for a group, the Van Aerde model was recalibrated for the four parameters 

(free-flow speed, capacity, speed at capacity, and jam density) by using the average values of 

each parameter for all sites within a group. The comparison is illustrated in Figure 5.7.    

 

Figure 5.7. Comparison of speed-flow plots for bridge- and pavement-related activities for 

(3,2) configuration 
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activities, while the drop in speed is gradual in the case of bridge-related activities. There is a 

significant difference in capacity value (160 vphpl) that can be observed between bridge and 

pavement work. Although pavement activities have a higher free-flow speed than bridge 

activities, the capacity for pavement activities is lower. 

5.2.2.2. Comparison of Different Work Activities for (2,1) and (4,2) Configurations 

In this study, two of the study locations consisted of (2,1) configurations with pavement-related 

work activities, while there were no data for bridge-related activities. Additionally, the (4,2) 

configuration was observed in two study locations with bridge-related activities, while there 

were no data available for pavement-related activities with a (4,2) configuration. The 

representative speed-flow curves for (2,1) and (4,2) configurations with respective work 

activities were developed using the methodology explained in the previous section. The plots are 

illustrated in Figures 5.8 and 5.9.  

 

Figure 5.8. Speed-flow plot for pavement-related activities for (2,1) configuration 
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Figure 5.9. Speed-flow plot for bridge-related activities for (4,2) configuration 
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Figure 5.10. Comparison of speed-flow plots for bridge- and pavement-related activities for 

(2,1) configuration 

 

Figure 5.11. Comparison of speed-flow plots for bridge- and pavement-related activities for 

(4,2) configuration 
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Table 5.4. Work zone capacity (vphpl) by lane closure configuration and type of work 

 (2,1) (3,2) (4,2) 

Bridge-Related (Range) - 1,488–1,656 1,416–1,620 

Bridge-Related (Representative) 1,638.0 1,575 1,518 

Pavement-Related (Range) 1,380–1,560 1,120–1,728 - 

Pavement-Related (Representative) 1,470 1,413 1,362 

 

Table 5.5. Work zone FFS (mph) by lane closure configuration and type of work 

 (2,1) (3,2) (4,2) 

Bridge-Related (Range) - 60–62.7 53–59 

Bridge-Related (Representative) 63.4 61.5 56 

Pavement-Related (Range) 65–67 61–65.3 - 

Pavement-Related (Representative) 66 64 58.4 

 

In Tables 5.4 and Table 5.5, the capacity of pavement-related work is found to be lower than 

bridge-related work, while free-flow speed is higher in pavement work than in bridge work. The 

range of capacity values is wide for pavement-related work because pavement work comprises a 

broad range of work activity. In the case of bridge-related activity, the range of capacity values is 

narrow because work activity comprises a limited number of activities. It was also found that the 

(4,2) configuration has the lowest capacity while the (2,1) configuration has the highest capacity 

among the three lane closure configurations.  

5.2.3 Comparison for Different Lane Closure Configurations 

Speed-flow plots were developed for each lane closure configuration irrespective of the type of 

activity (i.e., all activity types for a given lane configuration were combined). Figure 5.12. shows 

the plots generated for the three configurations.  
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Figure 5.12. Comparison of speed-flow plots for different lane closure configurations  
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6. CONCLUSIONS 

The latest edition of the HCM (2016) contains a revised chapter on assessing work zone impacts. 

While the 2010 edition recommended using a formula to compute work zone capacity, the 2016 

edition recommends a new procedure that utilizes free-flow speed and capacity adjustment 

factors to determine work zone capacity. However, the new procedure does not include specific 

guidance on how work activity effects can be incorporated. In this project, a methodology was 

developed to analyze traffic flow characteristics for various work activities. The methodology 

involves developing speed-flow curves and deriving capacity and free-flow speed adjustment 

factors.  

The following conclusions were drawn from the study: 

 Higher flows could occur either at breakdown or prior to recovery to free-flow conditions. In 

most cases, the breakdown flow was found to be higher than the flow prior to recovery. 

Therefore, to prevent underestimation, a higher value between breakdown flow and discharge 

flow prior to recovery should be considered as the best estimate of capacity.  

 Goodness of fit statistics showed that the Van Aerde model was the best fit model for most of 

the study locations (MAPE < 20% for all locations). The Gipps model and Newell-Franklin 

model were good fits for a few locations but performed poorly (MAPE > 30%) in other 

locations. Thus, the Van Aerde model is recommended for developing speed-flow curves for 

various work activities. 

 The capacity reduction factor for different work activities was found to be in the range of 

0.68 to 0.95, while the free-flow speed reduction factor was found to be in the range of 0.78 

to 1.0. This finding further emphasizes the need to customize the new HCM adjustment 

factors to different activity types. The factors shown in Table 5.2 are recommended for use 

by practitioners until they can develop their own adjustment factors by applying the proposed 

method to their jurisdictional data. 

 Work activities were broadly classified into two groups: bridge-related activities and 

pavement-related activities. The variation in capacity values was found to be much lower in 

bridge-related activities, 1,488 vphpl to 1,656 vphpl, than pavement-related activities, 1,120 

vphpl to 1,728 vphpl. The higher variation in the capacity values for the pavement-related 

activities may be due to the wider range of activities that are within the scope of pavement-

related work (as classified in the MoDOT database).  

Future research should apply the proposed method to analyze additional work activities from 

other jurisdictions. One challenge in developing the speed-flow curves is the availability of 

observations representing both congested and uncongested conditions. Often, work activity may 

occur only during one of these two periods, thus making it challenging to fit a traffic flow model 

for all conditions. 
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A second challenge is the availability of work activity data. Work zone information is typically 

archived in DOT planning databases. DOTs typically archive transportation data in the form of a 

transportation management system database. These databases also include data pertaining to 

work zones. However, in a majority of cases, the work zone information is obtained from the job 

descriptions contained in contracts. While the broad description of work and total duration 

mentioned in contracts may be accurate, the actual dates, types and locations of work activity, 

and other work zone characteristics depend on weather, construction phasing, coordination with 

other construction activity in the area, and other parameters. Thus, relying only on planning-level 

data based on contracts can lead to the use of insufficient or inaccurate data to assess work 

activity impacts.  

State work zone coordinators and traffic management centers (TMCs) also generate a more 

dynamic and short-term update of work zone schedules. For example, the TMC in St. Louis 

generates biweekly and daily schedules of work zones that it shares with work zone personnel 

and the public by posting on social media such as Twitter and Facebook and distributing 

electronic alerts via email and text messages. Because the data are updated in real time, they tend 

to be more accurate. Unfortunately, these data are not always archived and are rarely in a format 

that can be easily retrieved (e.g., pdf, text) or queried later. Time and effort can be saved if DOTs 

can archive real-time data and have tools available to easily retrieve activity information, i.e., 

type of work, begin and end time, and lane closure information. 
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