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EXECUTIVE SUMMARY 

The number of Internet-connected cameras are increasing at a rapid pace. State departments of 

transportation (DOTs) and city municipal agencies install a large number of roadside cameras on 

freeways and arterials for surveillance tasks. The main objective of this study was to investigate 

the use of these cameras as a sensor for traffic state estimation.  

The scope of this project involved detecting vehicles, tracking them, and estimating their speeds. 

The research team adopted a tracking-by-detection framework for this study. The object 

detection task was performed using you only look once version 3 (YOLOv3) model architecture 

and the tracking was performed using the simple online and realtime tracking (SORT) algorithm.  

The team tested the framework on videos collected from three intersections in Ames, Iowa. The 

combined detection and tracking was performed at approximately 40 frames per second (fps) 

using GeForce GTX 1080 GPU, enabling it to be implemented online easily.  

Camera calibration was performed by finding the edges of moving vehicles to automatically 

detect the vanishing points, and the scale was determined manually from a known fixed distance 

in the image and the real world. Although this methodology performed vanishing point 

determination automatically without any manual intervention, the speed estimation error came 

out to be quite high (~13 mph). The error can be reduced significantly by performing calibration 

and scale factor determination fully manually. However, since it requires full manual 

intervention, it is difficult to scale the algorithm across multiple cameras.  

In the future, the detection task can be improved by training the model on a larger dataset. 

Specifically, the University at Albany’s detection and tracking (UA-DETRAC) dataset can be 

used in the future to improve detection results. Tracking performance can be improved in the 

future by using Deep SORT or similar tracking algorithms that use appearance descriptions for 

tracking purposes. This can help in reducing the number of identity switches. Speed estimation 

can be improved in the future by extending automatic camera calibration to automatic scale 

estimation, which would also improve accuracy simultaneously. 
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CHAPTER 1. INTRODUCTION 

The number of Internet-connected cameras is increasing at a rapid pace. It is expected that there 

will be a billion cameras worldwide by 2020. This breakthrough has great potential for making 

cities smarter and safer (Naphade et al. 2011). However, monitoring capability hasn’t improved 

at the same pace. Most of the cameras installed on freeways and arterials are still used for 

manual surveillance purposes only.  

State departments of transportation (DOTs) and city municipal agencies install a large number of 

roadside cameras for surveillance tasks like incident detection. These cameras are used by traffic 

incident managers (TIMs) who can zoom, tilt, and pan the cameras according to their needs. The 

objective of this project was to study the scope of using these cameras as a sensor system and use 

it for traffic state estimation or automatic surveillance purposes. 

Traditionally, traffic state estimation is done using point-based sensors, which include inductive 

loops, piezoelectric sensors, and magnetic loops (Kotzenmacher et al. 2004). With the recent 

advances in active infrared/laser, radar sensors, these devices are gradually replacing the 

traditional point-based sensors (Zhong and Liu 2007). Also, with the increasing usage of 

navigation-based global positioning system (GPS) devices, probe-based data are emerging as a 

cost-effective way to collect network-wide traffic data (Feng et al. 2014).  

Video monitoring and surveillance systems can also be used for calculating real-time traffic data 

(Ozkurt and Camci 2009). Recent advances in image processing techniques have improved 

vision-based detection accuracy. Deep learning methods like convolutional neural networks 

(CNNs) have been able to achieve human-level accuracy in image classification tasks (He et al. 

2016).  

The basic advantage of these methods are they don’t require picking up hand-crafted features 

and, hence, can do away with the painstaking calibration tasks in using camera images for traffic 

state estimation (Bauza et al. 2010). The cameras can be used for various estimation or detection 

of various transportation-based problems such as the following: 

 Traffic state determination (e.g., speed, volume, and occupancy) 

 Queue length determination 

 Origin-destination matrix estimation using vehicle re-identification 

 Traffic conflict determination (vehicle-vehicle, vehicle-person) 

Figure 1 gives a brief overview of the key steps in using cameras for traffic monitoring.  
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Figure 1. Overview of the key steps in using cameras as a sensor 

The two main components involve object detection (vehicles and persons) and object tracking. 

The tracked objects can be directly used to find traffic conflicts using the trajectory information 

of the vehicles and people. The objects detected across multiple cameras can be used to 

determine the re-identification features and match the vehicles to find the origin-destination 

matrix.  

Traffic state determination generally requires setting up the region of interest (ROI) first and then 

determining the camera calibration parameters. This information can be processed to determine 

the speed, volume, occupancy, and queue length, if present. 

In this study, the research team performed proof-of-concept object detection, tracking, and 

camera calibration to determine the speed of all vehicles and, hence, the traffic volume within 

the camera field. Some preliminary analysis on anomalous trajectory identification was also 

performed. State-of-the-art object detection and tracking algorithms were adopted keeping in 

mind the necessity of real-time processing capabilities of the videos.  
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The next chapter provides an overview of the research done in object detection, tracking, and 

camera calibration. Chapter 3 provides the details of the data collected and used in this study, 

followed by the results obtained in Chapter 4. The final chapter provides the conclusions from 

this study and the future work that needs to be done.  
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CHAPTER 2. LITERATURE REVIEW 

Significant research has been performed in the fields of object detection, tracking, and camera 

calibration. This chapter gives a brief overview of the research performed in each of these fields. 

2.1. Object Detection  

In recent years, the evolution of CNNs have resulted in significant improvements in object 

detection and classification performance. Results of the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) point to dramatic improvements in object detection, 

localization, and classification (Russakovsky et al. 2015).  

Regions with convolutional neural networks (R-CNNs) were among the first modern 

developments of CNN-based detection (Girshick et al. 2014). These developments involved 

cropping externally computed box proposals from an input image and running a neural-net 

classifier on these crops. However, overlapping crops led to significant duplicate computations, 

which, in turn, led to low processing speed. Fast R-CNNs involved pushing the entire input 

image only once through a feature extractor and cropping from an intermediate layer (Girshick 

2015). This led to the crops sharing the feature extraction computation load and thereby 

increased processing speed.  

Recent works have focused toward generating box proposals using neural networks instead of 

the external box proposals used in R-CNN and Fast R-CNN (Szegedy et al. 2013, Erhan et al. 

2014, Ren et al. 2017, Redmon et al. 2016). These approaches involve overlaying a collection of 

boxes on the image at different locations, aspect ratios, and scales. These boxes are called 

anchors or priors.  

Training is then performed to predict the discrete class of each anchor and the offset by which 

the anchor needs to be shifted to fit the ground truth bounding box. The accuracy and 

computation time of the object detection algorithm depends significantly on the choice of these 

anchors.  

The following sections discuss the four such recent architectures: Faster R-CNN (Ren et al. 

2017), single shot detector (SSD) (W. Liu et al. 2016), region-based fully convolutional 

networks (R-FCNs) (Dai et al. 2016), and you only look once (YOLO) (Redmon et al. 2016).  

2.1.1 Faster R-CNN  

Faster R-CNN performs detection in two stages. Stage 1, called the region proposal network 

(RPN), involves processing images by a feature extractor (VGG-16), and the class agnostic box 

proposals are predicted from the features obtained at some selected intermediate level (conv5).  

In Stage 2, features from the same intermediate feature map are extracted using the box 

proposals and fed to the remainder of the feature extractor to predict the class and the class-
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specific box refinement for each proposal. Faster R-CNN forms the basis on which most of the 

future object detection algorithms, including SSD and R-FCN, are developed. 

2.1.2. SSD 

SSD architecture is built on VGG-16 architecture. It uses a single feed-forward convolutional 

network to predict classes and anchor offsets, thereby evading the requirement for a second stage 

per-proposal classification operation.  

In this approach, the output space of bounding boxes is discretized into a set of default boxes 

with different object scales and aspect ratios. During prediction, scores for presence of an object 

in each default box is generated by the network and, finally, adjustments are made to the box to 

match the object shape more accurately. 

2.1.3. R-FCN 

R-FCN is fundamentally derived from Faster R-CNN, but it is designed to work much faster than 

Faster-RCNN. In R-FCN, crops are extracted from the last layer of features prior to prediction 

instead of cropping features from the layer where region proposals are predicted. This minimizes 

the per-region computation and has shown to achieve comparable accuracy to Faster R-CNN 

with less computation time.  

Previous research studies have proposed a position-sensitive cropping mechanism in place of the 

standard ROI pooling operation (Ren et al. 2017). A detailed comparison of these three 

algorithms (Faster R-CNN, SSD, and R-FCN), along with the speed-accuracy tradeoffs, can be 

found in a study by Huang et al. (2017). 

2.1.4. YOLO 

YOLO frames object detection as a regression problem (Redmon et al. 2016). A single neural 

network is used to predict the bounding boxes and associated class probabilities in a single 

evaluation over the entire image. Thus, the entire pipeline can be optimized end-to-end based on 

detection performance. This makes the algorithm very fast and images can be processed in real-

time (45 frames per second [fps]). A detailed description of the YOLO model is provided in the 

Methodology chapter. 

2.2. Multi-Object Tracking 

Multi-object tracking (MOT) aims to estimate the states of multiple objects conserving their 

identification across time under motion and appearance variations. This involves determining the 

locations, velocities, and sizes of the objects across time. With the recent advancements in object 

detection, tracking-by-detection has emerged to be one of the predominant approaches for multi-

object tracking. This generally involves associating the objects detected across multiple frames 
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in a video sequence. The two broad categories in a tracking-by-detection framework are batch 

and online tracking.  

Batch methods usually involve determining object trajectories in a global optimization problem 

and processing the entire video at once. Short tracklets are generated; first, they start linking 

individual detections, and then, the tracklets are associated globally to form the object trajectory. 

Flow network formulations (Zhang et al. 2008, Berclaz et al. 2011) and probabilistic graphical 

models (Yang and Nevatia 2012, Andriyenko et al. 2012) are the two broad classes of algorithms 

in a batch MOT problem. However, the intensive iterative computation for generating globally 

associated tracks and the need for detection of the entire sequence beforehand limits the usage of 

these batch MOT approaches in real-time applications.  

Online methods build trajectories sequentially by using information provided up to the present 

frame and associating the frame-by-frame objects detected. Thus, this approach can be easily 

implemented for real-time tracking. However, it makes these methods prone to fragmented 

trajectory generation under occlusion and object detection errors.  

Traditional online MOT methods are multiple hypothesis tracking (MHT) (Reid 1979, Kim et al. 

2015) and joint probabilistic data association filter (JPDAF) (Fortmann et al. 1983, Rezatofighi 

et al. 2015). The JPDAF method involves generating a single state hypothesis by weighting 

individual measurements with the association likelihoods. MHT, on the other hand, involves 

tracking all possible hypotheses, and then, applying pruning schemes for computational 

tractability. Both of these approaches require increased computational and implementation 

complexity, thereby limiting their real-time implementation.  

Recently, Bewley et al. (2016) proposed simple online realtime tracking (SORT), which 

performs Kalman filtering in the image space and the Hungarian algorithm for frame-by-frame 

data associations. SORT ranks higher than MHT in the MOT Challenge dataset (Leal-Taixe et al. 

2015) with a state-of-the-art object detection framework (Ren et al. 2017). However, SORT is 

known to perform poorly when state estimation uncertainty is high and is known to return 

substantially high identity switches.  

To overcome this shortcoming, Wojke et al. (2017) proposed the Deep-SORT algorithm, which 

uses both motion and appearance information into the association metric, which increases 

robustness against occlusions or detection errors. Even more recently, Bae and Yoon (2018) 

proposed a robust online MOT method that uses confidence-based data association for handling 

track fragmentation and deep appearance learning for handling similar object appearance in 

tracklet association.  

In this study, the research team used the SORT method for tracking purposes, primarily because 

of its simple framework and fast computation, which make it extremely suitable for real-time 

purposes. In the future, Deep SORT or other advanced algorithms can be implemented and 

relative improvements in tracking can be determined. 
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2.3. Camera Calibration 

Camera calibration is the process of estimating camera parameters to map the pixel points in 

camera coordinates into real-world coordinates. This includes dealing with perspective 

projection, camera rotations, scene scale (distance of camera from the ground plane), and 

possible tangential and radial distortion. Mathematically, the camera calibration model can be 

represented as P = K [RT], where K denotes intrinsic camera parameters, R denotes camera 

rotation, and T denotes camera translation. Rotation and translation, the extrinsic parameters, are 

relative to the world coordinate system defined.  

Another alternative method of camera calibration is based on vanishing points of the road plane, 

which can be easily converted to the standard model. An attribute of camera calibration is the 

degree of automation, meaning whether the algorithm requires any manual input for each 

camera. This is particularly important for the scalability issue when the number of cameras 

installed grows significantly. Another important attribute is whether the algorithm can work from 

any arbitrary viewpoint or if it requires specific placement with respect to the road. Significant 

research has been done in this camera calibration domain keeping in mind the above challenges 

and requirements. 

He and Yung (2007) proposed camera calibration based on the calibration pattern formed by 

road lane markings. Vehicle location on the ground plane is extracted using the shadows cast by 

rear vehicle bumpers. Various studies have been done using the detected line markings to 

determine the vanishing points (Cathey and Dailey 2005, Grammatikopoulos et al. 2005, You 

and Zheng 2016). Scene scale was determined from the average line marking stripe length and 

real-world stripe length or any other known dimensions in the world.  

Camera calibration also has been performed using vehicle movement information. Schoepflin 

and Dailey (2002) and Dubská et al. (2015) obtained lane boundaries by detecting the vehicles 

and using the vehicle edges to determine the first vanishing point. The second vanishing point 

was determined by the intersection of lines formed by the bottom edge of the vehicles. Filipiak et 

al. (2016) used the license plates on vehicles to determine camera calibration parameters. The 

scene scale factor can be determined manually using the fixed length on roads (Schoepflin and 

Dailey 2002) or by fully automatically using the detected vehicle dimension distribution (Dubská 

et al. 2014). A detailed comparison of different camera calibration algorithms can be found in 

Sochor et al. 2017. 

Thus, significant research has been done in using cameras to detect objects, track them, and use 

them for speed estimation. Also, various other traffic analyses (traffic conflict detection, origin-

destination matrix generation, etc.) can be performed once vehicles are detected and tracked 

accurately.  

In this study, the objective was to study the scope of using cameras as a sensor for traffic speed 

estimation. The next chapter provides a description of the methodology adopted for each step of 

speed estimation (object detection, tracking, calibration, and speed estimation).   
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CHAPTER 3. METHODOLOGY 

The primary task in using cameras as a sensor was to detect objects and track them accurately. In 

this study, the research team adopted a tracking-by-detection framework to perform object 

tracking. In this framework, objects were detected in each frame. Then, detections from the 

current frame and previous frames were presented to the tracker.  

The main advantage of this method is it can utilize the recent progress in object detection tasks 

using deep-learning techniques to detect each object correctly and, thereby, also perform 

tracking. Also, since this framework uses only the current and previous frames for tracking 

purposes, it can be easily implemented online.  

The detection task was performed using the YOLO version 3 (YOLOv3) algorithm, and the 

tracking was performed using SORT. Details of each algorithm are presented next. 

3.1. Vehicle Detection: You Only Look Once (YOLO) 

The research team adopted the YOLO model for vehicle detection and localization from videos 

(Redmon et al. 2016). Current object detection systems repurpose powerful CNN classifiers to 

perform detection. For example, to detect an object, these systems take a classifier for that object 

and evaluate it at various locations and scales in the test image. YOLO reframes object detection: 

instead of looking at a single image a thousand times to do detection, it only looks at an image 

once (but in a clever way) to perform the full detection pipeline (see Figure 2).  

 

Figure 2. Confidence score prediction of bounding boxes by YOLO with colors and 

bounding box widths indicating confidence score probabilities 

A single convolutional network simultaneously predicts multiple bounding boxes and class 

probabilities for those boxes. This makes YOLO extremely fast and easy to generalize to 

difference scenes.  

In this study, the research team chose YOLOv3 for vehicle detection primarily because of its fast 

performance with reasonable accuracy, which makes it suitable for real-time performance 

(Redmon and Farhadi 2018). Specifically, the researchers used the YOLOv3-416 model trained 

on the Microsoft Common Objects in Context (COCO) dataset (Lin et al. 2014). The team chose 
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the classes of person, car, motorbike, bus, truck, and traffic light from the 80 classes in the 

COCO dataset for its vehicle detection module.  

3.2. Multi-Object Tracking: Simple Online and Realtime Tracking (SORT) 

The next task was to perform object tracking using the detection results obtained from Step 1 i.e., 

vehicle detection. To perform the multi-object tracking task, the team adopted the SORT 

algorithm formulated by Bewley at al. 2016.  

This framework uses the traditional Kalman filter and Hungarian algorithm to perform tracking 

using the frame-by-frame object detection results. However, SORT only uses object location 

information to perform the tracking task and does not use any appearance descriptor. Therefore, 

it suffers from a significantly high number of identity switches due to occlusion issues or poor 

detection performance.  

In the future, researchers can use the Deep-SORT algorithm, which solves the issue of identity 

switching using the appearance descriptor (Wojke et al. 2017). To perform the training task for 

the Deep-SORT algorithm, researchers can use the University at Albany’s detection and tracking 

(UA-DETRAC) benchmark dataset (Wen et al. 2015) and vehicle re-identification (Ve-Ri) 

dataset (X. Liu et al. 2016). The Deep-SORT algorithm also involves determination of the 

appearance feature vector, which can be used for vehicle re-identification purposes and to 

determine the origin-destination matrix. 

3.3. Camera Calibration and Scale Estimation 

After obtaining the vehicle trajectories, the next step was to convert the displacement in pixels to 

actual displacement in the field. This was done by camera calibration and scaling. The research 

team adopted the methodology provided by Dubská et al. (2015). The ground plane position and 

vehicle movement direction relative to the camera were defined as described by three vanishing 

points (VPs). The first VP was parallel to the movement of vehicles. The second VP, 

perpendicular to the first VP, corresponded to the direction parallel to the road (or the ground 

plane). Vehicle edges and their movements across frames were used to determine the two VPs. 

The third VP, perpendicular to the ground plane, and the focal length were determined using the 

two VPs and assuming the principal point to be the middle of the image. The scaling was done 

by measuring a real-world fixed distance and its length in the image. 

  



10 

CHAPTER 4. DATA COLLECTION 

Video data were collected in two phases in Ames, Iowa. In Phase 1, two cameras were used to 

record videos from two intersections in Ames for about 1.2 hours each. The two intersections 

were Lincoln Way and Grand Avenue and Stange Road and 13th Street. One camera was 

directed toward the traffic approaching the signal and the other camera was directed toward the 

signal with the traffic leaving the signal.  

In Phase 2, four cameras were used to record videos at the Airport Road and South Duff Avenue 

intersection in Ames. Table 1 gives a summary of each video recording along with a sample 

screenshot. All videos were recorded in 30 fps with pixel dimensions of 1280×720. Figure 3 

shows the locations where video recordings were done, with their corresponding IDs given in 

Table 1. Object detection and tracking were tested on this dataset.  

Table 1. Ames, Iowa video recording location details 

ID Location Direction 

Dur-

ation 

(mins) Screenshot 

1 

13th St. –

Stange 

Rd. 

Signal 64 

 

Approach 64 
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ID Location Direction 

Dur-

ation 

(mins) Screenshot 

2 

Lincoln 

Way –

Grand 

Ave. 

Signal 77 

 

Approach 77 

 

3 

Airport 

Rd. –

South 

Duff Ave. 

Signal 54 
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ID Location Direction 

Dur-

ation 

(mins) Screenshot 

Approach1 54 

 

Approach2 54 

 

Approach3 54 

 
 



13 

 
© Google 2017 

Figure 3. Study locations in Ames, Iowa where video recordings performed 

To test performance of the camera calibration and speed estimation methodology, the research 

team participated in Track 1 of the AI City Challenge 2018. In the challenge track, participating 

teams were asked to submit results for individual vehicle speeds in a test set containing 27 HD 

1920×1080 videos, each 1-minute in length.  

Table 2 gives a summary of each video recording location along with a sample screenshot. The 

videos were recorded at four locations in Silicon Valley, two on an area highway and two at city 

intersections, as shown in Figure 4. Performance was evaluated based on the ground truth 

generated by a fleet of control vehicles (with accurate GPS tracking) driven during the recording. 

Evaluation was based on the detection rate of the control vehicles and the root mean square error 

(RMSE) of the predicted control vehicle speeds. 

1 

2 

3 
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Table 2. Video data available in AI City 2018 Challenge 

ID Location Direction 

Dur-

ation 

(mins) Screenshot 

5 

I-280 – 

Winchest

er 

Approach 

Highway 
8 

 

6 
I-280 – 

Wolfe 

Approach 

Highway 
8 

 

7 

San 

Tomas – 

Saratoga 

Signal 6 
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ID Location Direction 

Dur-

ation 

(mins) Screenshot 

8 

Stevens 

Creek – 

Winchest

er 

Signal 5 

 
 

 
© Google 2017 

Figure 4. Study locations where video recordings available from AI City 2018 challenge  

2 

1 

3 

4 
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CHAPTER 5. RESULTS 

5.1. Vehicle Detection 

The object detection task using YOLOv3 architecture was tested to be performing at 

approximately 45 fps using NVIDIA’s GeForce GTX 1080 Ti GPU, which implies that it can be 

implemented online easily. Figure 5 and Figure 6 give sample object detection results obtained 

from the videos recorded in the locations mentioned in Table 1 and Table 2, respectively.  

 
(a) Location 1 



17 

 
(b) Location 2 

 
(c) Location 3 

Figure 5. Sample vehicle detection results obtained from videos recorded in locations given 

in Table 1 
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(a) Location 5 

 
(b) Location 6 
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(c) Location 7 

 
(d) Location 8 

Figure 6. Sample vehicle detection results obtained from videos recorded in locations given 

in Table 2 

It can be seen that, although the model can successfully detect nearby objects, it fails to detect 

some distant objects (Figure 6a). The results can be improved in the future by fine-tuning the 

trained model using a richer traffic dataset with diverse varieties, shapes, and sizes of vehicles. 

The publicly available UA-DETRAC benchmark dataset (Wen et al. 2015) and manual 
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annotation of vehicles in some images also can be used to fine-tune the model and improve 

object detection results. 

5.2. Vehicle Tracking 

The bounding boxes obtained from the detection task were then fed to the tracking algorithm. 

Figures 7 and 8 show examples of tracking results obtained from the study locations in Ames and 

Silicon Valley (AI City Challenge dataset), respectively. Each color in the images represents a 

unique tracking ID provided to the vehicles. However, as already stated, the SORT tracking 

algorithm returned a high number of identity switches (Figures 7b and 8a).  

 
(a) Location 1 
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(b) Location 2 

 
(c) Location 3 

Figure 7. Sample vehicle detection results obtained from videos recorded in locations given 

in Table 1 
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(a) Location 5 

 
(b) Location 6 
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(c) Location 7 

 
(d) Location 8 

Figure 8. Sample vehicle detection results obtained from videos recorded in locations given 

in Table 2 

A sample tracking video file from the Location 3 video recording (Duff Avenue and Airport 

Road intersection in Ames) is available at the following link: 

https://iastate.app.box.com/v/vehicle-track-pc. The video also shows the identity switching issue.  
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In the future, the Deep-SORT algorithm can be implemented, which can reduce this issue using 

the appearance description information (Wojke et al. 2017). 

5.3. Camera Calibration 

Camera calibration and speed estimation were tested on the AI City Challenge videos. Figure 9 

shows the vanishing points determined in each of the four locations. The red, green, and blue 

lines in the images indicate the first, second, and third VP, respectively. It can be seen that the 

second VP estimation is not always perfect (ID 5, 7, and 8 in Figures 9 a, c, and d respectively).  

 
(a) Location ID 5 
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(b) Location ID 6 

 
(c) Location ID 7 
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(d) Location ID 8 

Figure 9. Vanishing points determined in location IDs provided by AI City Challenge 

A similar observation was also noted by Dubská et al. 2015. Although the camera calibration 

approach used here was fully automatic and doesn’t require any manual work, the scale 

estimation needed a manual annotation of a fixed distance from the real world in a sample image 

for each location. Multiple fixed length distances were annotated from a sample image at each 

location, and the average scale factor was used for speed estimation. Figure 10 shows the fixed 

length distances annotated for each location. 



27 

 
(a) Location ID 5 

 
(b) Location ID 6 
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(c) Location ID 7 

 
(d) Location ID 8 

Figure 10. Fixed length distances, shown by red arrows, used for scale estimation in 

location IDs provided by AI City Challenge 

The research team’s AI City Challenge submission received a 96.3% detection ratio, which 

means 96.3% of the control fleet vehicles were detected for at least 30% of frames with 

intersection-over-union (IOU) of 50% or more. This shows that the object detection works fairly 
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well in test conditions. The RMSE in speed estimation is reported to be 12.9 mph on the 

challenge website. This shows a significant scope of improvement in speed estimation. A 

detailed analysis needs to be done in the future using speed data obtained from control vehicles 

in a test bed to find out the scope of improvement needed for the methodology adopted.  

Calibration also can be done fully manually to determine the vanishing points along with the 

scale factor. The winning team submission in the AI City Challenge involved manually labeling 

two parallel line pairs orthogonal to each other on the three-dimensional (3D) ground plane 

(Tang et al. 2018). These line pairs were used to derive the vanishing points. A set of line 

segments on the ground plane, each defined by two endpoints, were manually selected, with 

ground-truth 3D lengths measured using Google Maps.  

Using the calculated camera parameters, the two-dimensional (2D) endpoints of the line 

segments were back projected to 3D. Their Euclidean distances represented the estimated 3D 

lengths of the line segments. The absolute differences between estimations and ground truths 

were summed to describe the reprojection error. The objective was to minimize the reprojection 

error.  

The non-linear optimization problem was iteratively solved by the estimation of distribution 

algorithm (EDA). This methodology resulted in a RMSE of 4 mph. Thus, it can be seen that 

manual calibration to determine the vanishing points and scale factor can significantly improve 

the speed estimation results. However, it comes at the expense of manually calibrating cameras, 

which impacts scalability. 
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CHAPTER 6. CONCLUSION 

In this study, the research team performed vehicle detection, tracking, and speed estimation from 

camera videos. The team adopted a tracking-by-detection framework. The object detection task 

was performed using the YOLOv3 model architecture, and the tracking was performed using the 

SORT algorithm. The team tested the framework on videos collected from three intersections in 

Ames, Iowa. The combined detection and tracking was performed at approximately 40 fps using 

the GeForce GTX 1080 GPU. Therefore, it can be implemented online easily.  

Camera calibration was performed by finding the edges of moving vehicles to automatically 

detect the vanishing points, and the scale was determined manually from a known fixed distance 

in the image and the real world. Although this methodology performed vanishing point 

determination automatically without any manual intervention, the speed estimation error came 

out to be quite high (~13 mph). The error can be reduced significantly by performing calibration 

and scale factor determination fully manually. However, since it requires full manual 

intervention, it is difficult to scale the algorithm across multiple cameras.  

The detection task can be improved in the future by training the model on a larger dataset. 

Specifically, the UA-DETRAC dataset can be used in the future to improve detection results. 

Tracking performance result can be improved in the future by using Deep SORT or similar 

tracking algorithms, which use appearance description for tracking purposes. This can help in 

reducing the number of identity switches. Speed estimation can be improved in the future by 

extending automatic camera calibration to automatic scale estimation, which would also improve 

accuracy simultaneously. 
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