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INTRODUCTION 

Description of Beam and Slab Bridges 

The present trend in highway bridge design is toward 

structures consisting of reinforced concrete floor slabs sup

ported by longitudinal stringers of steel wide-flange sections 

or prestressed concrete. This change from the old truss bridge 

in the 20 to 100 foot span class has resulted in lower fabri

cation costs, faster erection, and a cleaner looking structure. 

The building of expressways with their many grade separation 

intersections and multi-leveled interchanges has also increased 

use of this type of structure. In addition, long span truss 

bridges use the beam and slab floor system between traverse 

floor beams in the bridge. 

In practice the longitudinal beams may be simply supported 

at the ends or continuous over several spans. In addition, 

they can be bonded to the concrete slab using shear lugs giving 

rise to a composite section in which the concrete also acts as 

part of the beam in the positive moment region. Even if no 

shear lugs are present, some limited bonding action usually 

takes place between the beam and slab. 

The transverse spacing of beams is usually the same 

throughout the bridge, the exact spacing and number depending 

on the design economics. At present a spacing of 9 to 10 feet 
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for steel beams and from 5 to 7 feet for prestressed concrete 

is being used unless head-room requirements dictate a greater 

number of shallow beams. 

Most slab and beam bridge floors also contain diaphragms 

or transverse beams that connect the longitudinal beams to

gether, usually at the ends and at intermediate positions along 

the span such as the third or quarter points. The effects of 

these diaphragms are generally not taken into account when 

designing the beams. They may, however, depending on their 

stiffness, appreciably affect the load distribution to these 

members. 

The reinforced concrete slab thickness may vary from 6 to 

10 inches, depending on the loading and the number of stringers 

involved. The main reinforcement is placed in the transverse 

direction and is designed to carry both positive and negative 

moment in the slab. A small amount of reinforcement is also 

placed longitudinally to distribute the load and to prevent 

cracking due to shrinkage and temperature effects. 

Highway Bridge Loads 

There are many loads that must be considered in designing 

a highway bridge, the principal ones being dead load, live 

load, impact, and wind (2, pp. 7-9). 

The total dead load consists of the weights of all 

materials used in the bridge structure such as beams, slabs, 
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curbs, railings, and present or future wearing surfaces that 

must be applied. Most designers divide the total dead load 

equally among all stringers after preliminary sizes have been 

determined. The actual distribution is more complicated than 

this, depending somewhat on the same principle as the distri

bution of live load and on construction procedures such as 

shoring the beams until the slab has hardened, thus allowing 

the dead as well as live load to be carried by composite 

action. 

The actual live load may be composed of a mixture of 

vehicles of various wheel spacings and weights, traveling at 

different speeds and intervals. The present practice in this 

country is to use the AASHO specifications, which designate 

that either a design truck (wheel) loading or a uniform lane 

load plus a transverse line load be used in each lane, depend

ing on the one which gives the greater bending moment in the 

slab or beam (2, pp. 10-15)» The AASHO design truck consists 

of two different axle arrangements, each with three different 

weights. One of these uses a wheel spacing of 6 feet, with 

14 feet between front and rear axle. Eighty percent of the 

load is considered to act on the rear axle, the remaining 20 

percent on the front axle. These trucks are designated 

H10-44, HI5-44, and H20-44, meaning that the total weight of 

each is 10, 15» and 20 tons, respectively. The other design 

truck is the same as the first except that a trailer axle 
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equal in weight to the rear axle is added with a variable 

spacing from 14 to 30 feet from the rear axle. These trucks 

are designated H15-S12-44 and H20-S16-44, meaning that the 

total weight of the truck is 1? and 20 tons on the tractors 

and 12 and 16 tons on the trailer axles, respectively. 

The impact load applied to a bridge is expressed as a 

percentage of the live load. This percentage, known as the 

impact factor, is specified by AASHO (2, p. 17) as a function 

of the loaded length of the span in question. The AASHO 

formula is based on fatigue and varies from 15 percent for 

long spans to a maximum of 30 percent for short lengths. 

Strictly speaking, the impact factor is dependent not only on 

the length of span but on many other factors such as the speed 

of vehicles, natural frequency of the bridge and roughness of 

the roadway. In other words, impact is also a dynamic effect, 

not only one of fatigue. 

Present Design Procedure 

Currently most states use the AASHO specifications for 

design of slab and beam floor systems (2, pp. 22-25)• These 

specifications define an effective width of slab for various 

spans, a live load moment formula for the design of the slab, 

and expressions for determining the maximum distribution of 

wheel loads to the beams. 

In these specifications the effective width of slab is 
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expressed as a function of the span for single or tandem axles. 

Actually it is also dependent on slab thickness, the slab to 

beam stiffness ratio, and longitudinal reinforcement. The slab 

moment is given, using moment coefficients to obtain both posi

tive and negative moments. The load distribution to the beams 

is based on the spacing of stringers. For example, the 1957 

AASHO specifications state that the fraction of a wheel load 

to steel I-beams with a concrete slab for two or more traffic 

S S 
lanes shall be for interior and 4,0 + o.2ffS *or exterior 

stringers, where S = the spacing of stringers in feet. 

Here again this distribution depends not only on spacing 

of the stringers but on slab and beam stiffness and the rela

tive stiffness between individual beams. In addition, other 

effects such as torsion in the beams and longitudinal distri

bution of the load along the beams may have appreciable 

effects. 

It is seen, therefore, that the AASHO specifications 

reduce to a very simplified state effects that are quite com

plex in nature. Also, since the specifications must cover a 

variety of bridges, they must understandably be quite conser

vative. 

Present Investigation 

Since the present AASHO specifications (1957) show con

siderable error in the load distribution to the beams of some 
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bridges, a number of methods have been developed by various 

individuals in order to obtain a closer correlation between 

design and test results. Some of these methods are discussed 

briefly in the Review of Literature section. In the present 

investigation another method is presented in which the distri

bution is solved in formula form for individual loadings 

instead of truck loadings. The solutions of the equations for 

the formulas are quite tedious but can be easily programmed 

and solved by a computer, thus eliminating the main disadvantage 

in solutions of this type. The theoretical results of this 

method were compared to tests using single loads on two 

laboratory test bridges and also with tests from two full-

sized highway simple span bridges and two four span continuous 

highway bridges. The theory and test results are in close 

agreement; and as the use of electronic computers becomes more 

widespread in the highway field, this method will most likely 

take on more significance for the practical designer. 

In addition to the load distribution analysis, some work 

was also conducted in connection with deflections and shearing 

forces in the slab. The effective width of slab in connection 

with slab design was also studied. 
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REVIEW OF LITERATURE 

The problem of determining the distribution of loads in 

beam and slab bridge floors is not new. Research on the 

subject probably began in the middle of the eighteenth century 

and continued until the beginning of the twentieth century. 

During this period the theory of elasticity was developed and 

applied to various types of slabs and support conditions. In 

the early 1920's the increase in the number of motor vehicles 

and improvements in reinforced concrete construction gave in

creased impetus to research in this field. 

In 1921, Westergaard (35) summarized previous theory and 

developed additional methods which helped lay the groundwork 

for present day investigations. It was realized at this point 

that while the theory of elasticity had furnished the basic 

plate equations applicable to slabs, the methods could only be 

applied to a very few problems due to the complexity of 

solution. Methods were then sought that could contain simpli

fying assumptions which would not introduce serious errors 

into the results. Actual tests, in addition, were conducted 

and in some cases empirical expressions for load distribution 

were developed. 

Some of the first such tests to be conducted were those 

by Agg and Nichols (1) of Iowa State College (now Iowa State 

University) in 1919, in which bridges with steel stringers 
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and timber floors were used. This project was continued by 

Fuller and Caughey (5, 6,. ?), utilizing bridges with timber 

and concrete floors placed on steel stringers. Strains were 

measured in the stringers for both dynamic and static truck 

loading. 

These tests probably gave the first reliable data as to 

the actual distribution of load and may have helped establish 

the first formal specification of this type. 

Although these concrete slab bridges were not designed 

for composite action with the steel stringers, it was noted at 

the time that the steel and concrete did act as a single unit. 

In addition to research on load distribution, work was 

also being done on effective slab widths. This included an 

analytical study by Westergaard (34) in 1930 in determining 

the effective width of slabs for moment. His work indicated 

that the effective width of the slab was essentially the same 

for various distances from its supporting beam. 

Some experimental work of a similar nature on reaction 

distribution for slabs on simple supports was done by 

Spangler (31, 32). He used slabs of various thicknesses, 

widths, and spans; and found that the effective width for 

shear at the edges along the reactions was essentially the 

same for loads in all positions along a line perpendicular to 

the supports. 

Perhaps the most extensive investigation in connection 
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with concrete slabs supported by flexible beams has been 

carried out by the research teams at the University of Illinois, 

under the direction of Newmark and Siess (25)• In this work, 

theoretical analyses were made (15), together with tests on 

many model bridges. From these tests it was determined that 

the load from the slab is distributed to the entire length of 

the beam in varying amounts. This distribution is curved and 

is usually considered in sinusoidal form. Also, the moments, 

reactions, and deflections produced from a sinusoidal load 

component are of the same sinusoidal variation. 

A numerical method was developed by Newmark (22) which 

consisted of dividing the design load into components varying 

sinusoidally along the longitudinal axis, or expressing it as 

a Fourier series. In this way each term of the Series can be 

handled separately and then combined to get the total effect. 

The method, while accurate, is quite involved and has not been 

used extensively. 

In 1946 a method was presented by Guyon (11) for comput

ing transverse distribution of loads in a slab and beam floor 

system. His theory neglected the torsional stiffness of the 

beams but this was later taken into account by Massonnet 

(18, 19). 

In brief, this method consists of replacing the structure 

by an equivalent continuous structure that has the same 

average flexural and torsional stiffness as the actual bridge. 
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The loads are then placed on the slab and distributed longi

tudinally in sinusoidal form. These loads are expressed as a 

Fourier Series and substituted into the fourth order bi-

harmonic or general plate equation. This method, using 

simplifying assumptions, is probably easier to handle than 

Newmark1 s method; but it has not been used extensively in this 

country. 

In 1956 a doctoral thesis by R. M, Hblcomb (12) presented 

the results of extensive tests made on two full-sized bridges 

and two small laboratory test bridges. This research, spon

sored by the Iowa State Highway Commission as Research Project 

HR-12, was done at Iowa State University. In addition to the 

experimental work done, a method for the solution of bending 

moments in the beams of slab and beam bridges was developed. 

The procedure was essentially the method of consistent defor

mations in which deflections at various points between the 

slab and beams are equated. Here, as in Newmark1 s work, a 

sinusoidal distribution of loading on some of the beams was 

used. This procedure, while simpler than Newmark's method, is 

still somewhat involved. The results obtained were substan

tially in agreement with the experimental results, and are 

considerably more accurate than the standard AASHO distribu

tion specifications for loads on stringers. 

In I960 D. A. Linger (17) conducted tests on four bridges 

in the Des Moines, Iowa area. All bridges were of the slab 



11 

and beam type. Two of them used prestressed concrete beams, 

one had aluminum and the other steel wide-flange stringers. 

Although the tests on these bridges dealt more with 

dynamic rather than static loading, data was taken for both 

types of load distribution. The result of these tests showed 

that at midspan the dynamic and static distributions were very 

nearly the same. Some differences did occur in the steel 

stringer bridge, however, which seemed to have been due to 

torsional vibration of the slab. 

Both the aluminum and steel stringer bridges were studied 

by the author and are described more fully in the section on 

Experimental Investigation. 
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THEORETICAL INVESTIGATION 

Discussion 

As has been shown in the Review of Literature section, 

many methods have been devised for obtaining the load distrib

uted to bridge stringers. These methods vary from complex 

solutions by the theory of elasticity to the simple AASHO 

specifications. It was felt that perhaps a solution could be 

developed in formula form that, although it might be tedious 

to evaluate by hand, could easily be programmed for computer 

solution. Such a solution was made. 

Solutions to many slab problems can be solved by intro

ducing certain simplifying assumptions which do not appreci

ably affect the final result. The assumptions used in the 

method presented are as follows: 

1. The standard assumptions with regard to flexure 

theory in beams are valid. 

2. The slab is considered non-isotropic; stress is 

transferred more in one direction than in the other. In con

crete slabs, most of the load is transferred in the direction 

of primary reinforcement. 

3. All load in the slab is carried directly by the 

beams. 

4. Poisson's Ratio is neglected. 
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5. Torsion is neglected in both beams and slab. 

6. The flexural rigidity of the beams is based on the 

composite steel and concrete sections; and that of the slab is 

based on gross section, neglecting reinforcement. 

7. Maxwell's Law of Reciprocal Displacements is valid. 

8. Superposition for loads, moments, and deflections is 

valid. 

The last two assumptions, when checked experimentally, were 

found to be within the margin of instrumentation error. 

The procedure for deriving the equations assumes that the 

slab distributes the load transversely to the beams, which then 

take portions of the load depending on their relative stiffness 

and position with respect to position of load. The slab can 

therefore be considered a cross beam of finite width on elastic 

supports. The method chosen as the most convenient for obtain

ing the distribution in formula form was the principle of least 

work. This principle, for a loaded indeterminate structure in 

equilibrium, states that the values of the redundants must be 

such that the internal work (internal strain energy) in the 

structure is a minimum. Or, in other words, the partial 

derivative of the total strain energy with respect to a redun

dant is equal to zero; 

This relationship was discovered by Castigliano in 1873 and is 

generally known as Castigliano1 s Second Theorem. 

(1) 
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The use of this theorem requires the evaluation of the 

internal work (Wi) done in the beam. For beams in flexure the 

work done in bending is equal to one-half the bending moment 

(M) times the change in slope (6) of the beam, or 

dWi = | Md6 . (2) 

Since d9 -  , (3) 

the total internal work in the beam can be written as 

>b 

Wi = I k ̂  . (4) 

a 

_ f 1 M2dx "J 2 Ei ' 

The expression M contains the moments of redundant members in 

addition to the known loads on the beam, and the strain energy 

can now be minimized by setting the partial derivative of the 

work with respect to each redundant equal to zero; 

ib 

&-/ &*-<>• 
a 

While the theory is general and may be used for direct stress, 

shear deformations, and torsion; only its application to 

flexure will be considered in the following development. 

Notation 

In the derivation below and throughout the text, the fol

lowing terminology is used: 

= reaction of slab on the beam A (see Fig, 1) 
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Rg = reaction of slab on the beam 5 

RQ = reaction of slab on the beam C 

Rd = reaction of slab on the beam D 

P = concentrated loading (assumed unity) 

a = transverse distance of concentrated load from 

beam A 

S = spacing of beams 

l' = distance between centers of outside beams 

L = length of longitudinal beams center to center of 

supports 

b = distance of load P from left support of beams 

c = L - b 

Wi = work, or internal strain energy, stored in a 

member subjected to load 

EaIa = Ka = flexural rigidity of beam A 

Eglg = Kg = flexural rigidity of beam B 

EQIQ = Kç = flexural rigidity of beam C 

EQIQ = KQ = flexural rigidity of beam D 

ESIS = Kg = flexural rigidity of beam E (slab) 

H _ El(beam) 

" L M. 
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r = El(bgam) 
El(diaphragm) 

Derivation of Slab-Beam Equations 

The problem solved here is for a bridge with a slab sup

ported by four beams with a unit load P placed at any point on 

the slab, making it an indeterminate structure with two redon

dants. The loading condition and diagram are shown in Fig. 1. 

Ra and Rg are assumed to be the redundants and are assumed 

positive when acting upward on the slab, or downward on the 

beam. A negative value of RA, therefore, indicates a downward 

force on the slab and an upward force on the beam. From 

equilibrium conditions, RQ and Rg can be obtained in terms of 

Ra and RQ (see Fig. 1): 

Rc = -3Ra + 3P - ̂  - 2Kb , (6) 

RQ = 2RA - 2P + ̂  + Rg . (7) 

Writing the bending moment equations for the cross beam E 

(slab), 

Mx from RA to P = R̂ x, , (8) 

Mx from P to Rg = R̂ x, - P(x, - a) , (9) 

Mx from Rg to R̂ = R̂ x, - P(x, - a) + Rg(xt - S) , (10) 

Mx from RQ to R̂ = Rcx2 - 2RAxa - 2Px2 + + Rfîx2 . (11) 

Xi is measured from RA to R̂  
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x2 is measured from RQ to RQ 

X3 is measured from left support of beams to beam E 

X4 is measured from right support of beams to beam E 

These values are then substituted in Equation 5: 

p1 
c)Wi£ _ I J0Mdx 

5V J0 ' 

X 
c)WiP I MdMdx 

(12) 

(13) 

or for Case I when a is equal to or greater than 0, but less 

than or equal to S, 

Ŵi 2̂S n2S r2S „ p 
EsIs =J RA*1 2dx + I "P̂ X1 " a)xidx + I Rn(x1 - S)x,dx ?)R. I  A '  I  r v A 1  a y A 1 " A  I  B  

A «y0 va 

,S 2Pax22 
+/ (4RAx22 - 4PX22 + —̂  + 2RBx22)dx , (14) 

0 

E)WiE _ 
E_I„ -sp =J jR̂ x, - P(x, - a) + Rg(xj - S)J (x, - S)dx 
's s dRB vs 

+/. (2Ra - 2P + ̂  + RB)x22dx . (15) 



18 

When the preceding equations are integrated between the proper 

limits and simplified, we obtain 

= 3Ë-r[24RAS3 + 9RgS3 - P(3S3 - 4aS2 + a3)J , (16) 

= i2g j. [x8RaS3 + 8RgS3 - P(18S3 - 10aS»)J. (17) 

In like manner for Case II when a is equal to or greater than 

S, but less than or equal to 2S, 

?)Wic 1 r 1 
= 5Ë̂ L24RAS3 + 9RBS3 " P(3S3 - 4aS« + a3)J, (18) 

7)Wic 1 r 
Pjp = 12E I L18RAS3 * 8RBS3 ™ p(l6s3 - 4aS* - 6aaS 

+ 2a 3)] . (19) 

Similarly, the expressions for energy stored in the beams can 

be obtained in terms of R̂  and Rg 

For beam A: 

EAIA5̂ =̂ ¥x3|̂ dx',̂ ¥x*5̂ dx = -̂  • (20) 

Since Rg does not enter into the moment equation of beam A, 
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For beam B: 

dWi= . 

Vb ssf " 0 • 
(22) 

Ei 25a 
b̂ orb 

RnC <)M 
T *3 dx + 

p c 
FUc t)M 
Y" X4. TS- dx 

5ïÇ 

C2baFL 
-5T2 • C23) 

For beam Cs 

lUc ()M 

l 0 - X 3 ^ M + J 0 ^  
Tv5 dx + I -r- X4. Tn~ dx , 

dM 

= 4̂  (*A + 2*8 - # + ? ' (24) 

Vc dRg 

d«c f%c dM fCRpb £>M 
—  " 0  —  x 3vq d *  + J 0 ~ x * ^ d x '  

= ̂  (3RA + 2Bb - 3P + f) (25) 

For beam D: 

ÔWiD fbRDc dM fV ÙM 
Vd 5V =J — "3 55̂  dx *J  — x *  ̂  d x  » 

= Ŝ à2 (2RA + Ry - 2P + &), 

dWi 

Vb dRg 
D _ *D< 

c)1̂  
~ X3 To- dx + 

dM 

*4 5ÏÇ dx > 

= ̂  (2RA + RB - 2P + f). 
Pa> 

(26) 

(27) 
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The partial derivatives of the work in the individual members 

with respect to R̂  and Rg can now be combined and set equal to 

zero. 

= Wi' beam E + Wi' beam A + Wi» beam B + 
d A 

Wi' beam C + Wi' beam D = 0 . (28) 

= Wi' beam E + Wi' beam A + Wi' beam B + 

Wi' beam C + Wi' beam D = 0 . (29) 

In this case, Wi' represents the partial derivative of Wi with 

respect to the redundant in question. The final equations, 

derived after differentiating, integrating, and collecting 

terms, are shown in Fig. 1. Again, there are still two cases: 

one when a is equal to or greater than 0 but less than or equal 

to S, and the other when a is equal to or greater than S but 

less than or equal to 2S. 

The final equations are in a form that is easy to program 

for the IBM 650 Computer. Solution by hand calculator of these 

equations required about one-half hour per point, as compared 

with four seconds for the electronic computer. After program

ming, over 1800 separate solutions were obtained for four 

different effective slab widths on the six different bridges 

investigated. Some of the values for the laboratory bridges 

are tabulated in the Appendix. 



Beam E 

^Beam E 

T 
a 
* 

8> P 
1 

L > 

Beam D 

Beam C 

Beam B 

Beam A 

5̂  = RA + ^  + £X ( j l  + J L  
L \*c 3KdJ  

(-24S* + lfeaS* - a3̂  + cV ft ' 3  
+ 

2(l ~ 2)' 
"5ic *c  "&Ô 

rb + 

= 0 

rv 

ë; * *£- (1%+ 3̂  ra + 

3 2 2 
2S . c b 
SKg L \^3Kg " 3Kg " 3Kg 

-̂ - + 4- + -J-
rb + 

Rc = -3Ra + 3P - ̂  - 2R 

RD = 2RA - 2p + ̂  - Rg 

B 

Case I only 
-vX-

5aS* - 9S3 + c'b2 / 2fl - ̂  + S - 2' 

1_I5l 
3KC 3KD 

= o 

(-8S + 2aS + 3a S - a ) 

Case II only 

Note: EI = K 

Fig. 1. Final equations 

Use Case I when 0<a<9 

Use Case II when S<a<2S 
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EXPERIMENTAL INVESTIGATION 

General Properties of Test Structures 

As previously stated, the load distribution on six 

different bridges was studied. These consisted of two small 

laboratory bridges with simple spans of 10 and 25 feet, 

studied by the author theoretically and experimentally; two 

full-sizëd highway bridges with simple spans of 41.25 and 

71.25 feet, included in the thesis of Holcomb (12), using 

another theoretical method of analysis; and one four span con

tinuous aluminum beam highway bridge as well as a four span 

continuous steel beam bridge, both tested by Linger (17) with 

regard to dynamic action. 

All tests were made using truck loadings except those by 

the author, which consisted of single concentrated loads. All 

bridges were analyzed by the author's proposed method and com

pared with the test results. 

All six of these bridges were similar in some respects. 

Each had four longitudinal beams equally spaced and symmetrical 

in cross section. All inside curb faces were 6 inches outside 

the centerline of the exterior beams except those for the 

laboratory bridges, which were 2 inches, and that of the 

aluminum stringer bridge, which was 9 inches. All concrete 

slabs were approximately 8 inches thick except those for the 
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laboratory bridges, which were 2 inches. All bridges used 

shear lugs on the top flanges so that composite action would 

be developed between the beam and slab in the regions of 

positive moment. All bridges contained several relatively 

light intermediate diaphragms in each span. These diaphragms 

were not composite with the slab. The original calculations 

and design drawings for these bridges are on file with the 

Iowa State Highway Commission, Ames, Iowa. The 41.25 foot 

bridge is designated Design No. 3845, File 11744; the 71.25 

foot is Design No. 3645, File 11744. The two continuous 

bridges carry traffic over the new interstate highway just 

northwest of Des Moines, Iowa. The aluminum stringer bridge 

is designated Design No. 3357A, Polk County; the steel 

stringer bridge is Design No. 3556, Polk County. 

Laboratory Test Bridges 

Description 

These bridges both have a roadway width of 10 feet and 

span lengths of 10 and 25 feet each. The bridges are those 

used in the HR-12 Project and are located in the basement of 

the Engineering Experiment Station laboratory at Iowa State 

University. 

Each bridge is approximately one-third the size of a 

standard highway bridge; however, changes in some of the 

dimensions for test purposes prevent them from being classified 
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as exact models of a prototype highway bridge. They do, how

ever, represent a long span and short span bridge with somewhat 

thinner slabs and lighter beams than those used in actual 

design. The slabs of both bridges are about 2 1/4 inches thick 

and No. 5 smooth wires (.207 inch diameter) spaced on 2 inch 

centers are the primary reinforcement with two bent-up wires 

and a third wire top and bottom for both positive and negative 

moment. No. 5 wires spaced 7.7 inches on center or six wires 

per panel, all near the bottom, comprise the longitudinal 

reinforcement. Concrete coverage was 7/16 inch to the center 

of the main reinforcement, both top and bottom. This steel 

represents about half the amount that would be used if a one-

third scale ratio had been maintained between model and 

prototype. 

Each beam has constant cross section throughout, with the 

composite moment of inertia, of the interior stringers approxi

mately 11/2 times that of the exterior beams. Shear lugs 

welded to the tops of these beams insure composite action be

tween steel and concrete. The reaction rods consist of 5/8 inch 

diameter vertical rods pinned at each end with horizontal 

pinned rods to prevent lateral movement. This arrangement 

gives the equivalent of a pinned condition at one end and a 

roller at the other. 

General details of the 25 foot bridge are shown in Fig. 2 

and properties of both bridges are listed in Table 1. 
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lO'-O" 

yrl 9/16" 
/7X 2 1/4" 

3»-2 5/8'1 3'-2 5/8" 3'-2 5/8" 

End elevation 

Transverse reinforcement 0.207" diam. smooth rods, 2" o.c. 
Two trussed bars and one smooth bar top and bottom. 
Longitudinal reinforcement six bars per panel near bottom. 

25'-0" C-C bearings 

I 
IN 
I 
5\ 

All diaphragms 6[8.2 

çInterior stringer 12 B 22 

V Exterior stringer 12 B 16 1/2 
cut and welded to depth of O'-ll" 

Fig. 2. Details of 25 foot bridge 
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In the HR-12 Project, concrete blocks were hung from the 

under side of the slab to make up the deficiency in dead load, 

to seat the reaction, and to prevent actual reversal of strains 

due to live load. This same arrangement was used in the 

present tests for similar reasons and to insure correlation 

between the readings obtained in the earlier HR-12 tests by 

Hoicomb (12). 

Complete detailed information on construction, determina

tion of the modulus of elasticity of the steel beams, 

calibration of the reaction rods, and on the testing is in the 

files of the Iowa State Highway Commission. 

Loading 

The loadings used in the HR-12 Project were scaled-down 

truck loadings of 4,000 lbs for single axle loads, and 8,000 

lbs for tandem axle loads. Dual wheels with tire sizes of 

4.00-8, 2 feet between centers, were used. This represented 

almost an exact one-third scale ratio to the standard truck 

rear wheels (Fig. 4a). 

In the present project, a single concentrated load used 

instead of wheel loads was applied by means of an hydraulic 

jack (Plate 1, 2). The loads applied were 5,000 and 10,000 

lbs. A 15)000 lb load was sometimes applied near an interior 

beam when the load was at some distance from the midspan to 

get sizeable readings. The loads were placed on the 25 foot 

bridge according to a grid pattern of 1 foot longitudinally 
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Table 1. Properties of simple span laboratory bridges 

Bridge, span, ft 10 25 

Span (L), in. 120 300 

Roadway width, ft 10 10 

Beam spacing (S), ft 3.22 3.22 

Slab thickness (t), in. 2.19 2.25 

Slab I (t3/12)in.Vin. 0.875 0.950 

Ratio Iint./̂ ext. at midsPana 1*33 1.48 

Beam BAB A 
Int. Ext. Int. Ext. 

Ib of beam, in.4 
at midspan 67.2 50.6 379 256 

EI of beam (10)9 lbs/in.2 
at midspan 1.98 1.49 11.14 7.52 

EI of beam (10)9 lbs/in.2 
at end — - — — --

Ist/cst at midspan, in.3 8.20 6.54 35.8 25.9 

Î /̂Cĝ  at end, in.3 -- — --

H = E3/LESIS at midspan 5.1 3.9 10.7 7.2 

r 0.057 0.075 0.034 0.051 

Ĉomposite interior and exterior beams 

Êquivalent all-steel section, n = 8 
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and 9.67 inches transversely. The latter dimension corre

sponds to loading at the quarter points of the slab between 

beams (Fig. 3). The grid is numbered 0, 1, 2, 3> 4, etc. 

longitudinally; and A, B, C, D, etc. transversely. For 

example, a load placed at Grid F-10 would mean that the load 

is located 10 feet from the south end of the bridge, at the 

one-quarter point in the slab between the two interior beams, 

and east of the longitudinal centerline. 

Instrumentation 

In order to check the theoretical results, strains and 

deflections in the bridges were measured at a number of 

points. Strains in the steel and concrete were measured by 

electric strain gages. In the 25 foot bridge, 74 Type A-l 

SR.-4 gages were used on the steel beams, most of them on the 

bottom flanges, 18 inches on center, with a few near the 

neutral axis and on diaphragms. Eleven Type A-9 gages were 

used on the concrete slab above the stringers. In the center 

of the bridge, 45 A-l gages were formed in a 3 x 3 foot grid 

pattern to measure strains in the concrete slab (see Plates 1, 

2). In all, 130 gages were used to measure strains at 128 

different grid locations of the load. 

Sixteen dial gages, reading to 0.001 inches, were placed 

at the one-eighth points under the east interior and exterior 

stringers of the 25 foot bridge to measure deflections 

(Plate 4), while nine dial gages measured deflections on the 
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4,000 lbs 
Single axle truck 

|r-g?| 

DC 

C 

D C  

C 
DC 
3c 

D 
D 

4,000 lbs 4,000 lbs 
Tandem axle truck 

Fig. 4a. Trucks used on the 10 and 25 foot laboratory 
bridges in the HR-12 Project (Holcomb) 

4'-3" ,|.20'-5 1/2')|_ 

Axle weight 
30,100 35,100 lbs 
32,000 34,300 lbs 

c 
c 

12'-6". 

All tires 10.00x20 

c d 

Bridge 
25,800 lbs 71.25 ft 7,000 lbs 
24,300 lbs 41.25 ft 7,400 lbs 

Fig. 4b. Truck loading used on the 41.25 and 71.25 foot 
simple span highway bridges in HR-12 Project 
(Holcomb) 

4*-0" lo'-8" 

Wheel diam. 3'~4" 

c D 

,860 lbs (both axles) 8,790 lbs 

Fig. 4c. H-20 truck loading used on the 220 and 240 foot four 
span continuous bridges in Project 376-S (Linger) 



Plate 1. 25 foot test bridge with loading arrangement 

Plate 2. Dial and strain gage locations 
for central slab measurements 
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Plate 3. Switching unit and strain measuring equipment 

Plate 4. Position of dial gages for measuring beam deflections 
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central grid pattern on the top of the slab (Plate 2). 

Measurements were also taken for the determination of 

effective width for slab design. This was done by observing 

the relative deflection of the slab in the center of the 25 

foot bridge as the load moved along the longitudinal center-

line. The dial gages were supported so that the deflection of 

the slab due to beam deflection was canceled, as indicated in 

Fig. 6 and Plate 2, leaving only the relative slab deflection. 

Most of the testing was done on the 25 foot bridge; the 

10 foot bridge was tested at only a few critical points to 

provide a comparison of two different bridge lengths. 

The strain gages on the steel were very stable. This was 

attributed to the fact that the bridges were located indoors, 

away from abrupt temperature changes and inclement weather 

that so plague the tests oh outdoor structures. Difficulty 

was encountered with many of the strain gages on the concrete 

slab; some showed excessive readings while others were 

extremely small. This was no doubt due to the fact that the 

concrete surface had many hairline cracks, which is usual for 

such slabs. Efforts were made to place the gages so that they 

were not over a crack; but even then, gages near a crack would 

show small readings while a gage nearby, presumably over a 

crack, would show high values. The 6 inch A-9 gages generally 

worked satisfactorily, except that most of them showed 

slightly lower strains than were indicated by prediction. 
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Some shift was noted in the zero readings from day to day. 

Most of this probably was caused by humidity changes, which 

were due to a moist chamber located nearby. 

Simple Span Highway Bridges 
(Field Spans) 

Description 

Each of these two bridges has a roadway width of 30 feet, 

the same curb dimensions, and the same crown. The spans are 

as previously stated: 41.25 feet and 71.25 feet. The end sup

ports are curved bearing plates to allow rotation at the ends. 

According to Holcomb (12, p. 90), 

The slabs vary slightly in thickness in the 
transverse sections. In the longitudinal sections 
the slab of the longer bridge is constant in thick
ness, but that of the shorter one is varied to 
compensate for dead load deflection, Fig. 14. An 
average thickness of 8.07 in. has been used through
out for the 71.25 ft. bridge. . . . The primary 
reinforcement of the slabs consists of 3/4 in. round 
straight bars at 8.5 in. center to center in both the 
top and bottom. According to the design drawings 
these bars were to have been placed at an average of 
2 in. from the surfaces to the centers of the bars. 
Limited exploration disclosed, however, that they are 
actually severely displaced in the completed bridges. 
Longitudinal reinforcement consists of 13 3/4 in. 
round bars in each space between beams. Of these, 7 
are near the top surface and 6 are near the bottom. 

The properties of these bridges are listed in Table 2. 

Loading 

The test load for these bridges consisted of a single 

commercial semi-trailer truck loaded with pig iron to a total 
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Table 2. Properties of simple span highway bridges 

Bridge, span, ft 41.25 71.25 

Span (L), in. 495 855 

Roadway width, ft 30 30 

Beam spacing (S), ft 9.69 9.69 

Slab thickness (t), in. 8.63 8.07 

Slab Is (tVl2)in.Vin. 53.6 43.6 

Ratl° hnt/hxt. 
at midspan 1.68 1.65 

Beam BABA 
Int. Ext. Int. Ext. 

I*5 of beam, in.4 
at midspan 16,600 9,900 45,500 27,500 

u 
I of beam, at 

end, in.4 10,000 7,750 35,900 19,600 

EI of beam 
(10)9 ibs/in.2 
at midspan 488 291 1,338 811 

EI of beam 
(10)9 ibs/in.2 
at end 292 228 1,056 575 

Ist/Cst at midspan, 

in.3 620 395 1,450 928 

Igt/cst at end, in.3 372 311 1,105 633 

H = E3/LE I at midspan 5.0 3.0 9.7 5.9 

r 0.027 0.045 0.011 0.016 

Ĉomposite interior and exterior beams 

Êquivalent all-steel section, n ~ 8 
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of 98,000 pounds. This load was distributed as follows: to the 

tandem tractor axles, which were 4.3 feet on center, approxi

mately 65,500 pounds* to the rear truck axle, which was 20.45 

feet ahead of the trailer axles, 25,300 pounds; to the front 

axle, which was 21.5 feet from the rear axle, 7,200 pounds (see 

Fig. 4b). This truck was positioned at several marked longi

tudinal and transverse locations on both bridges. 

Instrumentation 

Strains and deflections were taken by Holcomb at various 

points on the bridges for each position of the load. These 

strains were measured using SR-4 electric strain gages attached 

to the steel beams and diaphragms. Some of these were placed 

on the web of the beams in order to verify the location of the 

neutral axis. Deflections were measured along the stringers 

and transversely across the slab using dial gages. 

Continuous Span Highway Bridges 
(Field Spans) 

Description of aluminum stringer bridge 

This structure is a 220 foot continuous four span bridge 

having an 8 inch concrete slab supported on four aluminum 

stringers. The outer spans are 41.25 feet and the inner 68.75 

feet. The roadway is 30 feet wide with a 3 foot safety curb on 

both sides. The bridge was designed in 1957 using aluminum 

stringers to check the economy and design of a structure of 

this type. Additional properties are listed in Table 3* 
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Table 3» Properties of four span continuous aluminum stringer 
highway bridge 

Outer span Inner span 

Bridge, span, ft 41.25 68.75 

Span (L), in. 495 495 

Roadway width, ft 30 30 

Beam spacing (S), ft 9.5 9.5 

Slab thickness (t), in. 8.00 8.00 

Slab Is (tVl2)in.Vin. 42.6 42.6 

Ratio lint./̂ ext.' midspan* 1.27 1.15 

Beam B 
Int. 

A 
Ext. 

B 
Int. 

A 
Ext 

I*3 of beam, in.4 
at midspan 28,547 22,355 44,155 38,449 

I of beam, first int. 
support, in.4 42,089 32,154 42,089 32,154 

EI of beam, midspan, 
(10)9 ibs/in.2 294 230 454 396 

EI of beam, at end, 
(10)9 lbs/in.2 434 331 434 331 

Ist/cst, midspan, in.3 760 620 1,186 1,040 

Ist/cst> first int-
support, in.3 1,180 985 1,180 985 

H = E3/LEgIg, midspan 3.72 2.92 3.42 3< 

r 0.097 0.169 0.062 0.098 

Ĉomposite interior and exterior beams 
T-
Equivalent all-aluminum section, n = 2.75 
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Description of steel stringer continuous bridge 

This 240 foot continuous four span structure has outer 

and inner spans of 52.5 and 67*5 feet, respectively. The slab 

is 7*5 inches thick and the roadway width is 28 feet plus a 

safety curb of 3 feet on both sides (Table 4). 

Loading 

The vehicles used by Linger (17) in these tests were 

designated Vehicle A and Vehicle B. Vehicle A is an Inter

national L-190 van-type truck used to check the Iowa State 

Highway Commission scales, and has a wheel base of 14 feet, 

8 inches, with a gage of 6 feet. It weighs 40,650 pounds 

with 31,860 pounds on the rear tandem axle; in fact, it very 

nearly satisfies the AASHO specifications for the H-20-44 

design truck (Fig. 4c). Vehicle B is a tandem axle truck with 

a 36 foot flat bed trailer. However, this truck was not used 

in determining load distribution, so is of little interest 

here. 

Instrumentation 

Since the tests performed on these field spans were 

primarily for the determination of dynamic effects, oscillo

graph recording equipment was used. This consisted of eight 

Brusĥ universal amplifiers and direct writing recorders. SR-4 

strain gages were cemented to the bottom flanges of the steel 

and aluminum stringers near points of maximum positive and 



41 

Table 4. Properties of four span continuous steel stringer 
highway bridge 

Outer span Inner span 

Bridge, span, ft 52.5 67.5 

Span (L), in. 630 810 

Roadway width, ft 28 28 

Beam spacing (S), ft 9.0 9.0 

Slab thickness (t), in. 7.5 7.5 

Slab Is (t3/l2)in. 4/in. 35.1 35.1 

Ratio Iint/Iext., midspan8 1 0.92 0.92 

Beam B 
Int. 

A 
Ext. 

B A 
Int. Ext. 

Ib of beam, in.4 
at midspan 16,071 17,353 15,976 17,353 

I of beam, first int. 
support, in.4 21,548 20,830 21,548 20,830 

EI of beam, midspan, 
(10)9 lbs/in.2 482 520 479 515 

EI of beam, at end. 
(10)9 lbs/inX 649 626 649 626 

Ist/cst, midspan, in.3 565 565 56 5 565 

Ist/Cst> fizst int. 
support, in.3 1,078 905 1,078 905 

H = EI/LEglg, midspan 7.22 7.85 5.62 6.11 

r 0.028 0.026 . 0.028 0.026 

Ĉomposite interior and exterior beams 

Êquivalent all-steel section, n = 10 
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negative moment. Additional gages were also placed on the 

concrete and on the webs in order to determine the exact 

position of the neutral axes. 

The static tests were performed by having the loading 

vehicle creep across the bridge. This was done for several 

test lanes which ranged from contact with the curb to the 

middle of the bridge. For all these positions of the load, 

simultaneous strain readings were taken at the extreme bottom 

fibers of the beams. These values were then reduced by Linger 

to live load moments in each beam, and a percentage of each as 

compared to the total live load moment was obtained. This 

value was then taken as the live load distribution to each 

stringer. The method assumes that all moment diagrams are of 

the same shape. While this is not strictly true for single 

concentrated loads, it is more nearly correct when multiple 

wheel loads are used. 
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RESULTS AND DISCUSSION 

General 

The items investigated in this project can be listed 

briefly as follows: 

1. Determination of effective slab width for design 

of the slab. This would correspond to the E value in the 

AASHO specifications (2, p. 24). 

2. Determination of effective slab width for the 

distribution of loads from the slab to beams. 

3. The shape of the moment diagram for the interior and 

exterior stringers, with a concentrated unit load at various 

positions on the slab. 

4. Variation of shearing forces at the slab support. 

5. Comparison of predicted and test results. 

6. Method of handling superposition of loads. 

7. Limitations of the equations. 

8. Modification of the equations to include diaphragm 

and torsional stiffness. 

Effective Slab Width 

The effective width for slab design was studied by means 

of the slab deflection data taken at the center of the bridge. 

Using these deflections, influence curves were obtained, using 



44 

Maxwell1 s Law of Reciprocal Deflections, and are shown in 

Fig. 5* From these curves it can be seen that appreciable 

deflection extends about 4 feet on each side of the maximum 

point. However, the bulk is contained within the 30 inches 

specified by AASHO for a single axle load. The peak is quite 

high, due in all probability to the nature of the loading, 

which was transmitted to the slab through a lead plate 4 

inches in diameter, a smaller area than that of a rubber-tired 

wheel. It should also be noted that the influence line for 

deflection at the quarter point of the slab at midspan, while 

much lower in value, has approximately the same effective 

width. The main reason for checking this width in addition to 

checking the AASHO specification was to compare it with the 

effective width for distribution to the beams. 

In order to determine the effective slab width for the 

distribution of loads from the slab to beams, the equations in 

Fig. 1 were solved using effective slab widths ranging from 

0.1L to L for the various bridges, L being the span length of 

the bridge. These values were then compared to the experi

mental results, and the most appropriate effective width 

chosen. For the two laboratory bridges, the 71*25 foot highway 

and the aluminum stringer bridge, an effective slab width of 

0.8L was found to fit best the test results. Diagrams such as 

those shown in Figs. 7 and 8 were used in determining these 

widths. The best effective width for the 41.25 foot bridge and 
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slab: 1 kip load moving transversely across bridge 
at midspan 



47 

> 
d) 
jC 
o 
5 
S 
o 
8 
r> 
C 
•w 

<0 
n 
u) 

c 
•h 
> 
<u 
£. 
o 
c 
•rl 
s 
o 
e 

c 
•h 
<0 u 

tn 

80 

60 

40 

20 

0 

•20 

80 

60 

40 

20 

0 

-20 

1 
1 kip 

•b Ic Id 

• 1 r 
o Test 

\o — Proposed 
method 

o\ " 

ox 

O « 

1 1 

Exterior stringer A 

1 ~t "• ! 
o Test 
— Proposed 

method 

— 0\ 
ov 

« v 

1 .1 

Interior stringer B 

Fig. 7* Influence lines for strain at midspan for stringers 
in 25 foot bridge; 1 kip load moving along 
transverse centerline 



48 

1 

</> 

s o 
.c 

c 
o 
•H •p 
o 0) 
r-1 

S 

.04 

.02 

0 

.02 

.04 

.06 

1 kip 

b Id 

l 
o Test 

> 
— Proposed 

method 

/S"5 " 
/o 

— > 
/o 

A 

A 
1 

Exterior stringer A 

« 
<1) 
jcr 
o 
c 
•H 
•G 
•H 
a 
•o 
•H 
+> 
o-
® 
«—4 

s 

.04 

.02 

0 

.02, 

.04 

.06 

1 
o Test 
— Proposed 

method 
up 

Î 

c < o o o 

1 i 

Interior stringer B 

Fig. 8. Influence lines for deflection at midspan for 
stringers in 25 foot bridge; 1 kip load moving 
along transverse centerline 



49 

the continuous steel stringer bridge was found to be 0.6L. 

This difference was attributed to the difference in transverse 

diaphragms for these bridges, the latter two bridges having 

comparatively light diaphragms at the one-third points. 

Tests by Wei (33) have indicated that the effectiveness 

of diaphragms depends on their position and the stiffness 

ratio. This stiffness ratio is defined as the dimensionless 

quantity r = ̂ ElCbeam)̂  ' Thus i-t can be seen that for 

small values of r̂  say less than 0.01, the diaphragms do not 

contribute much to slab stiffness. Also, diaphragms placed at 

the one-third points of a span are much less effective than 

those placed at or very near midspan, since this is the 

location where maximum moments usually occur. Other factors 

that influence diaphragm usefulness are the beam spacing to 

length ratio (S/L) and the ratio of beam to slab stiffness 

H = En/LESL , in which EI is the flexural rigidity of the beam 

and EI is the flexural rigidity of the slab per unit width. 

Thus a high value of H indicates a relatively flexible slab in 

which a greater percentage of load will be transmitted to 

individual beams than would be the case with low values of H. 

It can be seen then that diaphragms would play a much more 

important role in stiffening bridge floors having high values 

of H than in the systems having low values. The values of r 

and H for the bridges tested are tabulated in Tables 1 through 
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From the examination of the data in Tables 6 through 11, 

it appears that for bridges with diaphragms at the one-third 

points, S/L between 0.1 and 0.25 and H not greater than 10, 

an effective slab width of 0.8L when r is greater than 0.15, 

and 0.6L when r is less than 0.15 should be used. For three 

or more diaphragms and similar ratios of S/L and H, an effec

tive slab width of 0.ÔL is used when r is greater than 0.015, 

and 0.6L when r is less than 0.015. 

In order to show the variation in load distribution for 

various effective slab widths, Figs. 9 and 10 were drawn, using 

effective widths of 2.5, 5, 10 and 20 feet for the 25 foot 

bridge. These graphs show that the change in load distribution 

decreases as the effective span increases. For example, the 

maximum percent load variations compared to the total load 

between the 5 and 10 foot and the 10 and 20 foot width on the 

25 foot bridge are 7 percent and 4 percent, respectively. In 

the bridges tested, the use of 0.6L instead of 0.8L did not 

cause a variation in maximum loading on beams in any of the 

test bridges in excess of 8 percent for interior or 6 percent 

for exterior beams. 

The use of such a wide effective slab width does not 

indicate that there is appreciable longitudinal distribution 

of the load in the slab itself. Instead, the slab near the 

load transmits this force directly to the beams through the 

approximate effective slab width E as used in slab design. 



Effective slab width 
varies from 2.5 to 
20 feet 

Fig. 9. Influence lines for load to interior stringer b for various effective 
slab widths at midspan; unit load moving along transverse centerline 
of 25 foot bridge 
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Fig. 10. Influence lines for load to exterior stringer A at midspan* unit load 
moving along transverse centerline of 25 foot bridge 
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This load causes the beams to deflect, forcing the slab to 

deflect longitudinally with it and thus distribute the load 

over a wider width than E. 

Moment Diagrams and Shear (Distribution 

The shape of the moment diagrams for the interior and 

exterior stringers of the 25 foot laboratory bridge was deter

mined experimentally using the strain readings measured along 

these stringers. These values have been plotted (Figs. 11, 

12) for both stringers, using loads at midspan and near the 

one-quarter point. The calculated values, using the equations 

in Fig. 1 are also plotted, assuming a concentrated reaction 

acting between the beam and slab. It can be seen that when 

the load is directly over the beam, the sides of the moment 

diagram are concave upward, indicating that the slab is 

exerting an upward force along the beam except in the vicinity 

of the loading. In this case the calculated values are 

slightly lower than the measured values. For loads a short 

distance from the beam in a transverse direction, the moment 

diagram is concave downward, which indicates a downward 

distribution reaction on the beam from the slab. Here the 

calculated values, assuming a concentrated load, are somewhat 

higher. Since the bulk of the bending moment in a beam is 

due to the wheels closest to it, the error in using concen

trated reactions appears to be small. The calculated values 

in Figs. 7, 8, 11, 12, and in Tables 6 through 11, were 
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were obtained in this manner. 

If greater accuracy should be desired, different distri

butions could be used for the more distant loadings, say those 

beyond a distance of S from the stringer. Several different 

distributions were tried, assuming two loads of equal magni

tude spaced at a distance S at midspan. A comparison of the 

bending moments at the center of a simply supported stringer, 

using different assumed load distributions, is shown in 

Table 5* 

Table 5» Maximum moments in stringers for a distributed load 

Total distributed load R 

Concentrated load 

Uniform load 

Triangular load (peak at midspan) 

Sinusoidal load 

Moment at midspan 

RL/4 

RL/8 

RL/6 

RL/27T = RI/6.28 

The sinusoidal distribution of the form p' = p sinrj£ , where p 

is the load intensity at midspan, is usually considered the one 

that most closely approximates the actual distribution of the 

reactions between beam and slab for distant loadings. 

As an example, consider two unit loads on the 25 foot 

bridge at midspan, directly above the interior stringers. The 

moment induced in one of the stringers due to both loads can be 

determined by superposition. These moments when calculated, 
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assuming a concentrated load, are 6 percent greater than the 

test results; while the calculated values, assuming that the 

distant load is sinusoidal in nature, are 7 percent below test 

figures. For more distant loads the sinusoidal loading 

approaches the true load; but since these loads have a smaller 

effect on the total moment, the error in using concentrated 

loads usually decreases. 

The variation of shear in the slab along the edges of the 

stringers was also studied. Examination of the shear diagrams 

for the 25 foot laboratory bridge revealed that the maximum 

shear in the slab at midspan occurs along the inside face of 

the exterior beam and outside face of the interior beam when 

loaded with a roving concentrated load. Figs. 13 and 14 show 

the influence lines calculated by the equations in Fig. 1 for 

these points at midspan and at the end of the bridge. These 

diagrams indicate that the maximum shear at midspan is about 

70 percent of the maximum shear at the supports. At present 

AASHO specifications (2, p. 25) state that slabs designed for 

bending moments in accordance with specifications are to be 

considered satisfactory in bond and shear. Although this may 

work satisfactorily for most highway bridges, high shears may 

be encountered if thin slabs are used. The computation of shear 

by the proposed method (equations, Fig. 1) would give de

signers a method of varying bar sizes to meet bond requirements 

between midspan and the ends of the bridge. 
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Comparison of Predicted and Test Results 

The final criterion in developing a practical method of 

analysis is whether or not it works. In order to decide this, 

one must determine how much error is allowable and over what 

range of values it will work satisfactorily. For this purpose 

Tables 6 through 11 have been prepared. Tables 6 through 9 

compare the computed strains in the four simple span bridges 

with the experimental values. Unfortunately the strain data 

taken for the continuous bridge was not available but, as 

Table 6. Comparison of maximum measured and computed strains 
in stringers at midspan, using truck loadings, for 
10 foot simple span laboratory bridge 

One 4,000 lb axle Two 4,000 lb axles 
Wheels 2 ft c-c Trucks 3.33 ft c-c 

Int. beam Ext. beam Int. beam Ext. beam 

(Strains in microin./in.) 
Observed values 

by author 270 262 418 312 

Observed values 
by Hoicomb 262 255 412 306 

Calculated values 
by author 294 295 443 317 

Percent error13 9 12 6 2 

MS HO 1957 338 466 429 466 

Percent error** 25 40 3 33 

Ŝuperposition of concentrated loads to give wheel loads 

P̂ercent error is based on observed values taken by 
author 
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previously mentioned, diagrams showing the experimental static 

load distribution to stringers were drawn by Linger (17)• 

These values have been plotted in Figs. 15, 16, 17, and 18 for 

various positions of the truck, together with the computed 

values. The maximum values at the one-quarter point for the 

outer spans and at midspan for the inner spans are tabulated 

and compared with the computed values in Tables 10 and 11. In 

all cases the percent error shown is equal to: 

computed value - test value 1nn 

test value x 1UU " 

Thus a positive error indicates that the computed value is 

conservative. 

AASHO (2, p. 10) specifies that the position of two 

trucks side by side should be 10 feet center to center, with 

the center of the outermost wheel group not less than 2 feet 

from the inside face of the curb (one-third of these values of 

course being used for the laboratory bridges). Therefore, 

only loadings falling within these specified positions are 

considered in Tables 6 through 11. 

An examination of the percent errors between theory and 

test show that they vary from +12 to -6 percent. The average 

positive error is 6.0 percent and the average negative error 

2.4 percent. The largest positive errors were found to exist 

in the 10 foot bridge. This is probably due to its short 

length, which would allow some of the slab to distribute load 

directly to the abutments. 
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Table 7. Comparison of maximum measured and computed strains 
in stringers at midspan, using truck loadings, for 
25 foot simple span bridge 

One 4.000 lb axle Two 4,000 lb axles 
Wheels 2 ft c-c Trucks 3*33 ft c-c 

Int. beam Ext. beam Int. beam Ext. beam 

Observed values3 
by author 130 

(Strains in microin./in.) 

199 225 243 

Observed values 
by Hblcomb 136 192 228 225 

Calculated values 
by author 128 207 230 258 

Percent error -2 4 2 6 

AASHO 1957 202 272 257 347 

Percent error13 47 37 14 39 

Ŝuperposition of concentrated loads to give wheel loads 

P̂ercent error is based on observed values taken by author 

Tables 6 through 11 also show values obtained using the 

1957 AASHO specifications. The maximum error in this case was 

81 percent, the average being 32.7 percent. All these errors 

were positive, indicating that the AASHO specifications are 

necessarily conservative. It it also interesting to note that 

the AASHD specifications show a maximum error of 30 percent 

and an average error of only 16 percent for the continuous 

bridges. This probably reflects the use of the later specifi

cations, while the simple span bridges were designed using 
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Table 8. Comparison of maximum measured and computed strains 
in stringers at midspan, using truck loadings, for 
41.25 foot simple span bridge 

One 33,000 lb truck Two 33,000 lb trucks 
Wheels 6 ft c-c Trucks 10 ft c-c 

Int. beam Ext. beam Int. beam Ext. beam 

Observed values 
by Holcomb 236 

(Strains in microin./in.) 

307 382 351 

Calculated values 
by author 220 328 370 375 

Percent error8 -6 4 -3 5 

AASHO 1957 315 493 400 628 

Percent error3 34 60 5 79 

P̂ercent error based on observed values taken by Holcomb 

earlier load distribution formulas. 

The above comparisons indicate that the proposed method, 

while somewhat more involved, is certainly more accurate than 

the present AASHO specifications used in designing highway 

bridge floors. 

Use of the Proposed Load Distribution Method 

In order to use the reaction values from slab to beam for 

practical bridge design, the concentrated loads must be super

imposed to obtain wheel loads, uniform lane and line loads. 

To check the validity of superposition, test loads on the 10 
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Table 9. Comparison of maximum measured and computed strains 
in stringers at midspan, using truck loadings, for 
71.25 foot simple span bridge 

One 59,000 lb truck Two 59,000 lb trucks 
Wheels 6 ft c-c Trucks 10 ft c-c 

Int. beam Ext. beam Int. beam Ext. beam 

Observed values 
by Holcomb 165 

(Strains in microin./in.) 

250 285 318 

Calculated values 
by author 172 264 307 314 

Percent error3 4 6 8 -1 

AASHO 1957 264 452 336 575 

Percent error3 60 81 18 81 

P̂ercent error is based on observed values taken by 
Holcomb 

and 25 foot bridges were combined to obtain truck loading and 

were compared with Holcomb's results, using truck loads. 

These were reasonably close when checked (Tables 6 and 7). 

The procedure, then, for practical design would be as 

follows: 

1. Using the program which has been worked out for the 

650 Computer, data cards can be punched for the various 

parameters of the bridge. These are length of bridge, spacing 

of stringers, EI of slab and beams, and the various coordinates 

of load position. The computer can solve these at the rate of 

one solution every six seconds, solving about 400 problems in 
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Table 10. Comparison of wheel load distribution to stringers 
at midspan, using truck loadings, for 220 foot 
four span continuous aluminum stringer bridge 

Two H-20 trucks Two H-20 trucks 
Trucks 10 ft c-c Trucks 10 ft c-c 

Outer span Inner span 

Int. beam Ext. beam Int. beam Ext. beam 

Observed values 
by Linger 1.62 

(Fraction 

1.14 

of wheel load) 

1.41 1.31 

Calculated values 
by author 1.71 1.23 1.42 1.41 

Percent error8 6 8 1 8 

AASHO 1957 1.73 1.49 1.73 1.49 

Percent error8 7 30 23 14 

P̂ercent error is based on observed values taken by 
Linger 

approximately 40 minutes. If the bridge is symmetrical, it is 

necessary to solve only one-fourth of the total bridge. The 

size of the grid is optional; however, enough points should be 

taken so that interpolation between points should not be 

necessary. A 2 x 2 grid should be satisfactory for a full-

sized bridge; or if desired, only those points that correspond 

to the wheel positions need to be solved. It should also be 

noted that usually only the center portion of the bridge need 

be solved, since the moments due to loads near the ends of the 

bridge are never maximum unless there are unusual loading 
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Table 11. Comparison of maximum wheel load distribution to 
stringers at midspan, using truck loadings, for 
240 foot four span continuous steel bridge 

Two H-20 trucks Two H-20 trucks 
Trucks 10 ft c-c Trucks 10 ft c-c 

Outer span Inner span 

Int. beam Ext. beam Int. beam Ext. beam 

(Fraction of wheel load) 
Observed values 

by Linger 1.52 1.20 1.48 1.24 

Calculated values 
by author 1.44 1.30 1.42 1.32 

Percent error® -5 8 -4 6 

AASHO 1957 1.64 1.44 1.64 1.44 

Percent error9 8 20 11 16 

P̂ercent error is based on observed values taken by 
Linger 

conditions. 

2. The reaction from slab to any stringer can be obtained 

by combining all values that correspond to the truck wheel 

positions. 

3« The bending moments in the stringers can be obtained 

by solving for the moments due to the concentrated reaction 

acting on the stringer; or the moments of the more distant 

wheels can be found by working out separately the bending 

moments, using distributed load formulas similar to those in 

Table 5 and then combined to give the final moment. 
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4. Uniform loads such as dead load and lane loads can 

be obtained by adding the reactions due to a line of concen

trated loads across the bridge. This gives the uniform load 

per unit grid width from which the bending moment for a 

uniform load can be obtained. The reaction to a beam varies 

very little as the line load moves longitudinally along the 

bridge, the greatest variation being near the ends as shown 

in Fig. 19. Since the loads at the end of the beam do not 

appreciably affect the maximum bending moment, a value of 

reaction for the line load near the center can be used as an 

average uniform load. It should be noted that the values in 

Fig. 19 represent the type of loading a stringer would have 

if the bridge were loaded with a uniform load over its entire 

roadway. It can be seen that for the 25 foot bridge near mid-

span, a uniform load on the slab is divided to each stringer 

very nearly in proportion to the distance half-way between 

stringers. However, for the continuous steel stringer bridge, 

which has exterior stringers of greater stiffness than 

interior stringers (the only case in all the bridges tested), 

the uniform load carried by the exterior stringers is 30 per

cent greater and that for the interior stringers 17 percent 

less than the amount based on stringer spacing. Thus it can 

be seen that considerable error may result when relative 

stringer stiffness is not considered in designing for uniform 

loading. 
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Limitations of the Equations 

The equations are based on the assumption that most of 

the reinforcement is transverse. In short bridges with con

siderable longitudinal reinforcement, much of the load would 

be distributed to the end reactions, and the solutions could 

be used only as a rough guide. 

Also, the equations are derived, assuming both that the 

slab is uniform in thickness and that the stringer sizes are 

symmetrical. If the stringers have variable moments of iner

tia, the equations have to be modified. This could be done 

easily if the variation is in some form easily integrated, such 

as the reciprocal I form. The formulas also do not take into 

consideration an overhang of slab on the exterior beam; how

ever, this could be taken into account by a simple modifica

tion. 

Since the equations are solved for a four stringer 

bridge, they are not applicable to a bridge with a greater 

number. Five and six beam solutions, while more involved, 

could be worked out. 

The method is derived assuming simple span bridges. How

ever, the continuous bridges checked showed that the load 

distribution is not appreciably different than that for simple 

span bridges. When investigating continuous bridges, it might 

seem more logical to use the span length as the distance be

tween inflection points on the bridge, since this would 
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correspond to a simple span. However, comparison of the 

method with test results indicates that this refinement is not 

necessary. The equations have been derived, assuming the 

general case in which each stringer could have a different 

stiffness. While most bridges are symmetrical, it is possible 

that unusual conditions might result in a design using a non

symmetrical arrangement of stringers. If such were the case, 

the equations in the proposed method should give much better 

results than the standard AASHO specifications. 

As stated previously, the equations have been derived, 

neglecting the effect of torsion in the girders on load dis

tribution. This assumption is justified as long as the beams 

are wide flange sections, since they have very little resist

ance to twisting. Also, the results of the tests seem to 

verify this assumption. When concrete beams are used, how

ever, either conventional reinforced or prestressed, it may 

not be possible to ignore completely this effect. Tests run 

by Mattock and Kaar (19) on a reinforced concrete slab 

rigidly connected to prestressed concrete girders showed a 

decrease in deflection of exterior beams by about 20 percent, 

and interior beams 10 percent. This of course would indicate 

a considerable change in load distribution. This could be 

taken into account in the proposed method by including the 

energy expression for torsion as well as moment. An approxi

mate method for taking torsion into account would be to add the 

torsional stiffness of the beam, say at midspan, to the 
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flexural stiffness of the slab, using the effective width E. 

Since both slab and stringer must rotate through the same 

angle, the approximate equivalent stiffness at midspan would 

be , where EI is the flexural rigidity of the slab, 

G the shearing modulus, and K an expression roughly the 

equivalent of the polar moment of inertia for rectangular or 

tee-shaped sections. In practice, M3 is usually evaluated by 

fixing one end of a beam, rotating the other end using a known 

torque and measuring the angle of twist. Once the equivalent 

stiffness is determined, the total effective slab width could 

be increased by this amount and the problem treated as before. 

Such a method should work as long as the torsional stiffness 

is not too large in proportion to the slab stiffness. At 

any rate, such a procédure should be checked by tests in order 

to determine these limits. 
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CONCLUSIONS AND RECOMMENDATIONS 

Examination of the results obtained from these tests in 

connection with load distribution in beam and slab bridge 

floors has led to the following conclusions: 

1. The result of the computed load distribution compares 

favorably with the test data obtained from the six bridges 

investigated. This indicates that the method is applicable 

for stringer to slab stiffness (H) values between 3 and 10, 

and stringer spacing to length ratios (S/L) from 0.13 to 0.32, 

these being the limits of the bridges tested. However, there 

seems to be no reason why the method should not apply for H 

values as low as 2 and as high as 20. The only limiting 

factor is that for low values of H, the slab may transmit some 

of its load directly to the abutments. 

2. The proposed method seems to work satisfactorily for 

continuous bridges as well as simple span bridges. 

3. The present AASHO specifications, while better than 

those prior to 1957» are still conservative and limited to 

stereotyped bridge floors. 

4. Diaphragms can be taken into account by considering 

their rigidity as part of the slab stiffness. The effective 

width of the slab can be varied in accordance with the limita

tions outlined on page 50. In general, conventional diaphragms 
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can be taken into account by increasing the effective width 

of slab by about 0.2 of the bridge span. 

5. Torsion effects can be neglected in bridge floors 

using conventional I-beams to support reinforced concrete 

slabs. However, this evidently is not the case for monolithic 

slab and concrete beam systems, A simple method, suchr as that 

suggested on page 74, should be devised to handle these 

systems. 

6. Use of the proposed method is not practical without 

access to an electronic computer, since the solutions are too 

lengthy by manual methods. However, computers are now in 

common enough use the even small consulting firms can have 

the computing done by an office owning or leasing computers. 

It would also be possible, if the demand were large enough, 

to solve a large number of bridge floors in dimensionless 

form, including the various parameters of stringer spacings, 

span lengths, and ratios of slab and beam stiffness. This 

data could then be combined in the form of graphs or tables, 

from which the load distribution values could be obtained. 

With such a set of graphs, any engineer versed in bridge 

structures could design a floor system more economical and in 

some cases safer than the method recommended by present AASHO 

specifications. 
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APPENDIX 

In the following tables some of the slab to beam reaction 

values have been tabulated for the 25 and 10 foot laboratory 

bridges. These values have been computed, using the equations 

in Fig. 1. In order to show the variation in load distribu

tion due to slab stiffness, the values obtained, using two 

different effective slab widths for each bridge, are listed. 

The loading used is a unit concentrated load located at the 

grid points indicated (Fig. 3)• A positive sign for the re

action indicates that the load from the slab is acting down

ward on the beam, while a negative sign indicates an upward 

force acting on the beam. 



Table 12. Influence tables for reactions from slab to beams for single concentrated 
load* Twenty-five foot bridge 

(See Fig. 3» p* 29 for location of grid points) 

Position 
of load 
(Grid No.) 
b 

Effective slab width ~ 10' Effective slab width = 20' 
«B "c «D 

a 

A 
B 
C 
D 
E 
F 
G 

A 
B 
C 
D 
E 
F 
G 

A 
B 
C 
D 
E 
F 
G 

1.0000 
0.6875 
0.4000 
0.1612 
0.0000 
•0.0720 
•0.0750 

0.9817 
0.6871 
0.4148 
0.1861 
0.0270 
-0.0523 
•0.0681 

0.9460 
0.6833 
0.4386 
0.2285 
0.0746 
•0.0151 
•0.0511 

0.0000 
0.3906 
0.7249 
0.9477 
1.0000 
0.8517 
0.5750 

0.0399 
0.3842 
0.6797 
0.8784 
0.9290 
0.8053 
0.5680 

0.1102 
0.3772 
0.6074 
0.7649 
0.8109 
0.7254 
0.5511 

0.0000 
•0.0937 
•0.1499 
•0.1308 
0.0000 
0.2612 
0.5749 

-0.0249 
-0.0798 
-0.1042 
-0.0670 
0.0608 
0.2947 
0.5680 

-0.0588 
-0.0544 
-0.0305 
0.0330 
0.1542 
0.3429 
0.5511 

0.0000 
0.0156 
0.0249 
0.0218 
0.0000 

-0.0408 
-0.0749 

0.0033 
0.0085 
0.0095 
0.0023 

-0.0169 
-0.0477 
-0.0680 

0.0024 
-0.0060 
-0.0154 
—0.0264 
-0.0397 
-0.0532 
-0.0511 

1.0000 
0.6875 
0.4000 
0.1612 
0.0000 

-0.0720 
-0.0750 

0.9666 
0.6860 
0.4257 
0.2050 
0.0479 

-0.0363 
-0.0614 

0.9123 
0.6762 
0.4547 
0.2613 
0.1138 
0.0184 

-0.0310 

0.0000 
0.3906 
0.7249 
0.9477 
1.0000 
0.8517 
0.5750 

0.0708 
0.3804 
0.6466 
0.8270 
0.8758 
0.7698 
0.5614 

0.1682 
0.3767 

8:1® 
0.7226 
0.6620 
0.5310 

0.0000 
-0.0937 
-0.1499 
-0.1308 
0.0000 
0.2612 
0.5749 

-0.0416 
-0.0688 
-0.0706 
-0.0208 
0.1043 
0.3178 
0.5614 

-O.O734 
-O.O323 
0.0210 
0.0993 
0.2132 
0.3688 
0.5310 

0.0000 
0.0156 
0.0249 
0.0218 
0.0000 

-0.0408 
-0.0749 

0.0041 
0.0024 

-O.OOI8 
-0.0112 
-0.0282 
-0.0513 
-0.0614 

-0.0071 
-0.0207 
-O.O33I 
-O.O432 
-0.0496 
-0.0493 
-O.O3IO 



Table 12 (Continued) 

Position 
of load 
(Grid No.) 
b 

Effective slab width = 
B «C 

a , 

A 0.9106 0.1708 -0.0737 
B 0.6758 0.3769 -0.0312 
C 0.4553 0.5553 0.0231 
D 0.2627 0.6790 0.1019 
E 0.1156 0.7188 0.2154 
F 0.0201 0.6592 0.3696 
G -0.0299 0.5299 0.5299 

A 0.8799 0.2172 -0.0744 
B 0.6667 0.3810 -0.0124 
C 0.4655 0.5231 0.0569 
D 0.2873 0.6223 0.1418 
E 0.1470 0.6555 0.2477 
F 0.0495 0.6104 0.3787 
G -0.0086 0.5086 0.5086 

A 0.8554 0.2525 -0.0684 
B 0.6579 0.3868 0.0024 
C 0.4716 0.5033 0.0782 
D 0.3049 0.5846 0.1642 
E 0.1709 0.6118 0.2636 
F 0.0734 0.5745 0.3789 
G 0.0104 0.4895 0.4895 

10' 

"D 
Effective slab width = 20' 

RA RB 

0.0077 
0.0214 
0.0338 
0.0438 
0.0499 
0.0489 
0.0299 

0.0228 
0.0353 
0.0456 
0.0514 
0.0503 
0.0388 
0.0086 

0.0385 
0.0472 
0.0532 
0.0538 
0.0463 
0.0269 
0.0104 

0.8648 
0.6616 
0.4694 
0.2980 
0.1613 
0.0637 
0.0025 

0.8271 
0.6475 
0.4765 
0.3218 
0.1948 
0.0985 
0.0319 

0.7984 
0.6358 
0.4802 
0.3380 
0.2187 
0.1245 
0.0555 

0.2385 
0.3842 
0.5107 
0.5991 
0.6288 
0.5887 
0.4974 

0.2879 
0.3947 
0.4871 
0.5511 
0.5714 
0.5395 
0.4680 

0.3232 
0.4044 
0.4742 
0.5215 
0.5342 
0.5053 
0.4444 

-0.0715 
-0.0035 
0.0702 
0.1560 
0.2581 
0.3795 
0.4974 

-O.O574 
0.0179 
0.0961 
0.1805 
0.2725 
0.3737 
0.4680 

-0.0418 
0.0337 
0.1108 
0.1914 
0.2754 
0.3639 
0.4444 

-0.0318 
-0.0424 
-0.0504 
-0.0532 
-0.0483 
-O.O32I 
0.0025 co 

w 
-0.0576 
-0.0601 
-0.0597 
-0.0535 
-0.0388 
-O.OII8 
0.0319 

-0.0798 
-0.0739 
-0.0653 
-0.0509 
-0.0283 
0.0061 
0.0555 



Table 12 (Continued) 

Position 
of load 
(Grid No.) 
b 

Effective slab width 
R, K B «C 

a 

A 0.8838 0.2794 -0.0604 
B 0.6501 0.3926 0.0141 
C 0.4754 0.4907 0.0921 
D 0.3178 0.5587 0.1771 
E 0.1891 0.5808 0.2709 
F 0.0924 0.5478 0.3754 
G 0.0266 0.4733 0.4733 

A 0.8175 0.2999 -0.0525 
B 0.6436 0.3978 0.0232 
C 0.4778 0.4824 0.1014 
D 0.3274 0.5406 0.1848 
E • 0.2029 0.5584 0.2741 
F 0.1073 0.5277 0.3709 
G 0.0398 0.4601 0.4601 

A 0.8049 0.3154 -0.0456 
B 0.6385 0.4021 0.0302 
C 0.4794 0,4768 0.1078 
D 0.3344 0.5277 0.1894 
E 0.2134 0.5422 0.2752 
F 0.1187 0.5128 0.3664 
G 0.0501 0.4498 0.4498 

8 

Effective slab width = 
A RB *C 

0.7769 
0.6266 
0.4823 
0.3492 
0.2359 
0.1439 
0.0736 

0.7610 
0.6196 
0.4835 
0.3573 
0.2484 
0.1581 
0.0872 

0.7493 
0.6144 
0.4843 
0.3630 
0.2527 
0.1686 
0.0973 

0.3486 
0.4123 
0.4665 
0.5020 
0.5089 
0.4811 
0.4263 

0.3671 
0.4185 
0.4617 
0.4888 
0.4912 
0.4637 
0.4127 

0.3805 
0.4232 
0.4586 
0.4796 
0.4788 
0.4512 
0.4026 

-O.O283 
0.0454 
0.1199 
0.1964 
0.2743 
0.3543 
0.4263 

-O.OI74 
0.0539 
0.1257 
0.1987 
0.2720 
0.3463 
0.4127 

-O.OO9O 
0.0602 
0.1296 
0.1999 
0.2698 
0.3399 
0.4026 

20 « 
«D 

-0.0973 
-0.0843 
-0.0688 
-0.0477 
-0.0191 
0.0205 
0.0736 

-0.1107 
-0.0921 
-0.07II 
-0.0449 
-0.0118 
0.0317 
0.0872 

-0.1207 
-0.0978 
-0.0726 
-0.0426 
-0.0061 
0.0401 
0.0973 



Table 12 (Continued) 

Position Effective slab width 
of load R. Rn R~ 
(Grid No.) A B ^ 
b a 

A 0.7955 0.3267 -0.0400 
B 0.6345 0.4054 0.0353 
C 0.4805 0.4730 0.1122 
D 0.3396 0.5186 0.1922 
E 0.2211 0.5305 0.2753 
F 0.1272 0.5019 0.3627 
G 0.0580 0.4419 0.4419 

A 0.7887 0.3348 -0.0359 
B 0.6316 0.4079 0.0390 
C 0.4812 0.4705 0.1151 
D 0.3431 0.5124 0.1939 
E 0.2265 0.5225 0.2752 
F 0.1333 0.4943 0.3598 
G 0.0637 0.4362 0.4362 

A 0.7844 0.3399 -O.0332 
B 0.6298 0.4095 0.0413 
C 0.4816 0.4690 0.1169 
D O.3454 0.5085 0.1949 
E 0.2300 0.5175 0.2749 
F 0.1372 0.4894 0.3578 
G 0.0673 0.4326 O.4326 

10 

11 

10' 

*D 
Effective slab width = 20* 

RA RB RD 

0.0822 
0.0754 
0.0658 
0.0505 
0.0271 
0.0080 
0.0580 

0.0876 
0.0786 
0.0669 
0.0496 
0.0243 
0.0125 
0.0637 

0.0911 
0.0807 
0.0676 
0.0489 
0.0224 
O.OI54 
0.0673 

0.7408 
0.6106 
0.4848 
0.3671 
0.2639 
0.1761 
0.1047 

0.7350 
0.6080 
0.4851 
0.3699 
0.2684 
O.I813 
0.1098 

0.7313 
0.6063 
0.4853 
0.3716 
0.2712 
0.1846 
0.1130 

0.3901 
0.4266 
0.4565 
0.4733 
0.4700 
0.4423 
0.3952 

0.3966 
0.4290 
0.4552 
0.4690 
0.4641 
0.4362 
0.3901 

0.4008 
0.4306 
0.4544 
0.4663 
0.4604 
0.4324 
0.3869 

-0.0028 
0.0646 
0.1323 
0.2004 
0.2678 
0.3352 
0.0039 

0.0014 
0.0677 
0.1340 
0.2006 
0.2664 
0.3318 
0.0039 

0.0042 
0.0697 
0.1351 
0.2007 
0.2654 
0.3296 
0.0038 

-0.1281 
-0.1020 
-0.0737 
-0.0408 
-0.0019 
0.0462 
0.1047 00 

-0.1332 
-0.1048 
-O.O744 
-0.0396 
0.0010 
0.0505 
0.1098 

-0.1364 
-0.1066 
-0.0748 
-0.0387 
0.0028 
0.0532 
0.1130 



Table 12 (Continued) 

Position 
of load 
(Grid No.) 
b a 

R, 
Effective slab width = 101 

R B *C R D R, 
Effective slab width = 201 

3 «C 

12 

12.5 

a 
B 
C 
D 
E 
F 
G 

a 
B 
C 
D 
E 
F 
G 

0.7823 
0.6289 
0.4818 
0.3465 
0.2316 
0.1391 
0.0691 

0.7820 
0.6288 
0.4818 
0.3466 
0.2319 
0.1393 
0.0693 

0.3423 
0.4103 
0.4683 
0.5067 
0.5150 
0.4870 
0.4308 

0.3427 
0.4104 
0.4682 
0.5064 
0.5147 
0.4868 
0.4306 

•0.0318 
0.0425 
0.1177 
0.1953 
0.2747 
0.3569 
0.4308 

•0.0316 
0.0426 
0.1178 
0.1954 
0.2747 
0.3567 
0.4306 

•0.0929 
•0.0817 
•0.0679 
-0.0486 
-0.0215 
0.0168 
0.0691 

•0.0931 
•0.0819 
-0.0680 
-0.0486 
0.0214 
0.0170 
0.0693 

0*7295 
0.6055 
0.4854 
0.3724 
0.2725 
0.1862 
0.1145 

0.7293 
0.6054 
0.4854 
0.3725 
0.2727 
0.1864 
0.1147 

0.4028 
0.4313 
0.4540 
0.4651 
0.4586 
0.4306 
0.3854 

0.4040 
0.4314 
0.4539 
0.4649 
0.4584 
0.4303 
0.3852 

0.0056 
0.0706 
0.1356 
0.2008 
0.2649 
0.3286 
0.0038 

0.0057 
0.0707 
0.1356 
0.2008 
0.2649 
0.3284 
0.3852 

•0.1380 
•0.1075 
•0.0750 
•0.0383 
0.0038 
0.0545 
0.1145 

-0.1382 
-0.1076 
-0.0751 
-0.0383 
0.0039 
0.0547 
0.1147 



Table 13. Influence tables for reactions from slab to beams for single concentrated 
load. Ten foot bridge 

(For midspan position) 

Position 
of load 
(Grid No.) 
b 

Effective slab width = 5' 
XB "c % 

Effective slab width = 8» 
Ri «C «D 

a 

A 0.9212 0.1512 -0.0663 -0.0062 0.8942 0.1924 -O.O676 -0.0190 
B 0.6824 0.3650 -0.0274 -0.0200 0.6758 0.3656 -0.0088 -0.0326 
C 0.4584 0.5503 0.0239 -0.0327 0.4699 0.5161 0.0578 -0.0439 
D 0.2629 0.6794 0.1007 -0.0431 0.2877 0.6220 0.1409 -0.0508 
E 0.1139 0.7222 0.2137 -0.0499 0.1449 0.6592 0.2468 -0.0509 
F 0.0182 0.6634 0.3683 -0.0500 0.0469 0.6153 0.3785 -0.0408 
G -0.0318 0.5318 0.5318 -0.0318 -0.0116 0.5116 0.5116 -0.0116 
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