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EXECUTIVE SUMMARY 

The prevention of weather-related road crashes continues to be a vital and challenging issue 

particularly for countries in cold regions. As an important part of modern transportation 

engineering, intelligent transportation systems (ITS) play an essential role in everyday life by 

improving transportation safety and mobility. A road weather information system (RWIS), a 

critical piece of ITS infrastructure, is a combination of advanced technologies that collect, 

process, and distribute road weather and condition information.  

RWIS information is used by road maintenance agencies to make operative decisions during 

winter season to ensure traffic safety and mobility of the travelling public. For this reason, many 

North American transportation agencies have invested millions of dollars to deploy additional 

RWIS stations onto their road network to improve the winter road monitoring coverage. Because 

of the significant cost associated with RWIS station installation, it is essential to develop an 

RWIS network planning and deployment guideline. To address such challenging issues and 

improve the generalization potential, this project investigated the dependency of optimal RWIS 

densities on readily available zonal characteristic data to help agencies determine a long-term 

strategic RWIS deployment plan. The topographic characteristics and weather severity of the 

associated study area were selected as zonal classification standards and used for developing 

optimal RWIS density guidelines. The main findings and key contributions of this project are 

summarized in the following sections. 

Topographic Position Index 

This study’s topography-based zonal classification was determined using the topographic 

position index (TPI), which defines the relative topographical variation of an area of interest and 

its neighborhood. The TPI value of each point was calculated by comparing the elevation of 

every point with the average elevation of a user-defined neighborhood region. A higher TPI 

value indicates a varied topographic region, while a lower TPI value indicates a flatland area. 

According to the TPI values, the study area was classified into three different landform groups: 

flatland, hilly, and mountainous.  

Weather Severity Index 

This study’s weather severity-based zonal classification was determined using an integrated 

winter weather measure, winter severity index (WSI), which provides a numerical estimate of 

weather severity using annual average snowfall accumulation and duration, annual duration of 

blowing snow, and annual duration of freezing rain. A WSI map of the United States generated 

by Iteris, Inc. (formerly known as Meridian Environmental Technology, Inc.) was adopted for 

this study for weather severity classification. According to the WSI values, the study area was 

categorized into four WSI-based classes: less, moderate, high, and extremely high severe 

weather zones. Generally speaking, weather severity increases from the southern to the northern 

parts of the study area.  
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Investigation of Spatiotemporal Characteristics of Road Weather and Topographic Factors 

Geostatistical spatiotemporal semivariogram modeling was used in this study to incorporate both 

spatial and temporal variations of several weather variables monitored by an RWIS. A 

semivariogram measures the similarity between two measurements as a function of separation 

distance. Larger autocorrelation ranges indicate greater spatiotemporal continuity of RWIS 

measurements and vice versa. The findings suggest that flatland areas with less-varied weather 

are shown to have a greater continuity range than hilly or mountainous regions and more severe 

weather regions; thus, comparatively fewer RWIS stations are needed to provide a certain level 

of monitoring coverage. 

Development of Region-wide RWIS Deployment Strategies 

An innovative optimization framework was developed and enhanced to optimize the spatial 

design of a regional RWIS network by incorporating the ultimate use of RWIS information for 

spatiotemporal inference as well as traffic distribution. The problem was formulated on a basic 

premise that data from each individual RWIS in a region should collectively be used to 

maximize their overall monitoring quality. The spatial simulated annealing (SSA) algorithm was 

employed to solve the optimization problem in an efficient manner. The optimization was run for 

two distinct scenarios: (1) all-new optimal locations for the existing RWIS network and (2) an 

expansion of the current RWIS network. The all-new plan may also be used by agencies that 

would like to install an entirely new RWIS network from scratch. The first analysis was to 

evaluate the location quality of the current RWIS network in relation to the optimal solution 

obtained from the research team’s model using the two location criteria (i.e., weather and traffic). 

Since relocating the entire set of existing stations may not be a feasible option, the second 

analysis was undertaken to suggest a few hypothetical expansion plans over the current RWIS 

network. 

Evaluation of the Leveraging Effect of Existing RWIS Stations in Neighboring Regions 

The effect of neighboring RWIS stations for RWIS network planning was evaluated by 

comparing the coverage of the existing RWIS network and an equal number of all-new RWIS 

stations generated by considering available RWIS stations in neighboring states. This is 

considered essential, particularly for developing a statewide RWIS implementation plan, where 

the primary goal is to leverage all available assets and existing infrastructure in a way that 

minimizes expending unnecessary resources to further reduce the cost of implementation. 

Furthermore, by making use of “extra” information available at neighboring sites (i.e., different 

jurisdictions), nowcasting and forecasting capabilities of an RWIS network will likely be 

enhanced when compared to that of using information available from only in-state RWIS 

stations. The results indicated that the deployment of RWIS should take the RWIS of bordering 

states into consideration. 
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RWIS Density Guidelines and Their Statewide Applications 

The spatiotemporal semivariogram analysis results were used as inputs for RWIS density 

optimization in order to develop RWIS siting guidelines. RWIS density per unit area for different 

topographic and weather severity regions were determined from the density optimization outputs. 

Lastly, density optimization results were used to generate an RWIS density chart for TPI-WSI 

zones. The RWIS density chart included upper bound, lower bound, and average number of 

RWIS stations needed for a defined unit area. Using the density chart, RWIS density was 

determined for 14 states. The study area is made up of a total of nine different TPI-WSI zones.  

Development of a Web-Based Visualization Tool 

The developed solutions were integrated into LoRWIS, a prototype web-based RWIS location 

visualization platform for demonstrating the proposed models and the resulting solutions.  
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1. INTRODUCTION 

Background 

Intelligent transportation systems (ITS) are an important part of modern transportation 

engineering and have a significant impact on society and everyday life. Their main contribution 

is to the improvement of transportation mobility and safety, particularly in how they relate to the 

prevention of weather-related road crashes, a vital and challenging issue, especially for countries 

with cold regions. In the US, over 1.5 million road crashes, 800,000 injuries, and 7,000 fatalities 

occur annually due to adverse weather (Jin et al. 2014). In Canada, about 3,000 fatalities result 

from weather-related accidents, and more than 1 in 135 people experience driving-related 

injuries annually (Andrey et al. 2001).  

A road weather information system (RWIS) consists of a set of weather and road condition 

sensors installed at a station near a road side. This combination of advanced sensors gathers, 

processes, and disseminates the road weather and condition information that is then used by road 

maintenance authorities to make operative decisions before and/or during inclement weather 

events in order to enhance overall road safety and decrease weather-related crashes. It is also 

used by travelers via RWIS-connected dynamic message signs to help them make more informed 

decisions when traveling during inclement weather events. However, the cost of investment in 

these technologies is significant. Indeed, many North American transportation agencies have 

invested millions of dollars to deploy RWIS stations to improve the monitoring coverage of 

winter road surface conditions (White et al. 2006, Kwon and Fu 2017). As transportation 

authorities are constantly challenged by limited budgets for installing additional stations, it is of 

paramount importance to address the questions of how many stations are necessary (optimal 

RWIS density) and where to locate them (optimal RWIS location) to maximize the return on 

their investment.  

Numerous studies conducted by researchers around the world have sought to quantify the spatial 

coverage of RWIS data and determine the optimal RWIS density and location based on available 

RWIS data (Eriksson and Norrman 2001; Manfredi et al. 2008; Kwon and Fu 2013, 2017; Kwon 

et al. 2017). The Federal Highway Administration (FHWA) initiated extensive efforts to provide 

RWIS siting guidelines based on the knowledge and experience of field operators (Manfredi et 

al. 2008). A more recent study by Kwon and Fu (2017) evaluated the dependency of optimal 

RWIS density on topographic conditions of the regions under investigation by examining three 

US states (Iowa, Utah, and Minnesota) and one Canadian province (Ontario). Their findings 

indicated that more RWIS stations would be needed in mountainous areas than in flatland areas. 

The study also asserted that a region with a longer spatial autocorrelation range would require 

fewer stations than a region with a shorter range (Kwon and Fu 2017). In this research, the 

project team has expanded on the former work by investigating the dependency of optimal RWIS 

density on two different measures, topographic and weather severity, in an effort to improve 

generalization potentials and design a long-term strategic RWIS deployment plan. Since, road 

surface conditions vary over space and also over time, there is, therefore, a need to incorporate 

the temporal domain in the optimization of RWIS location and density.  
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Spatiotemporal data analysis is a well-known geostatistical analysis technique that is commonly 

used to analyze the variability of parameters that have a tendency to fluctuate over space and 

time. It combines spatial and time series analysis concurrently to preserve the interactive effect 

of time variation on spatial domain and vice versa. Previous research reveals that spatiotemporal 

analysis is more accurate than spatial analysis as both time and space are included in 

spatiotemporal analysis (Gräler et al. 2016). The underlying techniques have been previously 

used to model air pollutants by quantifying the space-time variability of certain particles’ 

concentrations (Gräler et al. 2016, RESSTE Network 2017, Li et al. 2017, Ahmed et al. 2018). 

Spatiotemporal regression kriging has been used to predict precipitation using Moderate 

Resolution Imaging Spectroradiometer (MODIS) and normalized difference vegetation index 

(NDVI) data (Hu et al. 2017). In a study more relevant to the topic of interest, Wang et al. (2019) 

investigated spatiotemporal variation of road weather and surface conditions using RWIS data 

from Alberta, Canada. In this study, the authors developed space-time semivariogram models 

using RWIS measurements from Alberta in order to examine the applicability of the method. The 

study’s findings provided the spatiotemporal feature of the RWIS database (Wang et al. 2019). 

However, the dependency of the spatiotemporal feature of RWIS measurements on topographic 

and weather severity has yet to be scrutinized.  

There exists a large gap in current literature for determining spatiotemporally optimal density 

and location of an RWIS network. Equally important, there are no existing guidelines available 

for winter road maintenance agencies to use and decide its optimality, especially for regions with 

no RWIS data, which has been deemed a prerequisite for undertaking any RWIS-related analyses 

including location and density. 

Road Weather Information Systems (RWIS) 

An RWIS is a significant part of an ITS infrastructure, especially for countries with regions 

where winter conditions can significantly affect the mobility and safety of their transportation 

networks. Information regarding the road surface and weather condition is collected, processed, 

and distributed by RWIS stations that are generally installed alongside roads and highways. An 

RWIS station consists of atmospheric, pavement, and water-level monitoring sensors. The types 

of data collected by RWIS stations include air, surface, and sub-surface temperatures; 

precipitation rate, type and intensity; atmospheric pressure; wind speeds and direction; and road 

surface condition. Major components of an RWIS stations are presented in Figure 1.  
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Kwon and Fu 2016, Aurora Program 

Figure 1. Major components of an RWIS station 

Information disseminated by an RWIS station is collectively used by road operations personnel 

to make effective and timely winter road maintenance decisions, and to help travelers make more 

informed decisions related to scheduling their trips. In addition, RWIS information is also used 

for initializing the road weather and surface conditions forecasts to improve the quality of winter 

road maintenance services. With forecasted road weather information (e.g., subsurface and 

surface temperatures), proactive maintenance strategies such as anti-icing operations become 

possible to further improve the quality of road surface conditions (Sato et al. 2004). The 

accuracy of forecasts depends on various factors, such as climate characteristics, geographical 

and topographical settings, etc. (Ahrens 2009). The key benefits of an RWIS are improved traffic 

safety, mobility, and winter road maintenance (Kwon et al. 2017).  

Despite these benefits, there are a few limitations associated with both RWIS and the data 

collected by the stations. The biggest limitation is installation cost, which could be as high as 

$100,000 USD per station depending on the type and number of sensors (Kwon and Fu 2017). In 

addition, RWIS data provides point-based measures, which are often limited to capturing the 

spatial heterogeneity of the surrounding road surface conditions. For this reason, it is important 

to measure the spatial range of continuity of the measured data and associated variance of the 

data within the continuity range in order to understand the monitoring coverage of the stations 

for RWIS network planning issues. 
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Current Practice of RWIS Network Planning 

The determination for RWIS station sites entails several critical challenges, requiring full 

understanding and quantification of spatiotemporal variation of road weather conditions and 

needs for RWIS data. To address these challenges, several studies were conducted to establish 

proper guidelines for RWIS station installation (e.g., Kwon et al. 2017, Kwon and Fu 2017). An 

extensive effort was first initiated by the FHWA to provide a standard for RWIS network 

planning based on the analysis of published information on siting criteria for weather and 

pavement sensors and interviews with state departments of transportation (DOT) RWIS 

managers. The study recommended 30 to 50 km (20 to 30 mi) spacing for RWIS station 

installation based on the knowledge and experience of field operators (Manfredi et al. 2008). 

Given that the recommended guidelines are based on expert opinion, several researchers 

attempted to implement a more objective way to quantify the spatial coverage of RWIS data and 

identify an optimal set of locations and densities of RWIS stations (Eriksson and Norrman 2001; 

Manfredi et al. 2008; Kwon and Fu 2013, 2017; Jin et al. 2014; Kwon et al. 2017). 

Several studies were conducted to identify the location and number of RWIS stations required 

for specific regions. A study was conducted in Sweden to determine the hazardous conditions on 

a roadway by multiple regression analysis of RWIS data. In this research, 10 types of 

slipperiness were identified to classify road climate, and the RWIS site locations were 

recommended based on the slipperiness (Eriksson and Norrman 2001). Kwon and Fu (2013) 

presented a Geographic Information System- (GIS-) based framework to evaluate RWIS 

locations in Ontario, Canada, by modeling local road weather conditions (i.e., variability of road 

surface temperature [RST], mean surface temperature [MST], and snow water equivalent) and 

topographic location attributes (Kwon and Fu 2013). Jin et al. (2014) proposed an RWIS location 

optimization method that maximized spatial coverage of existing RWIS sensors based on 

weather-related crash data, which was converted into a safety concern index (Jin et al. 2014). 

Kwon et al. (2017) also proposed a new methodological framework, which implemented 

advanced geostatistical analyses for quantifying the underlying spatial structure of RWIS 

measurements, and then used an efficient combinatorial optimization algorithm, namely, spatial 

simulated annealing (SSA), for performing an RWIS network location allocation analysis (Kwon 

et al. 2017). In their study, the optimization problem was formulated as a nonlinear integer 

programming (NIP) problem to maximize the monitoring capability while minimizing kriging 

errors (Kwon et al. 2017).  

Several other studies were conducted in the past with a specific focus on developing an 

understanding of factors influencing road weather and surface conditions during inclement 

weather events. Factors influencing road conditions were listed and categorized in a detailed 

study by White et al. (2006). According to the literature, meteorological, geographical, road 

construction, and traffic parameters are the factors contributing to the spatial variation in RST. 

Amongst all the factors, topography was noted as the major factor influencing RST variation 

over a region (Gustavsson 1990, Boselly et al. 1993, Manfredi et al. 2005, Chapman and Thornes 

2005, White et al. 2006). For this reason, Kwon and Fu (2017) further extended their previous 

work by examining a hypothesis that the optimal RWIS density or spacing of a region may be 

dependent on the spatiotemporal variability of road weather conditions as well as their respective 

topographic settings (Kwon and Fu 2017). To do so, the authors conducted case studies using 
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three US states (Iowa, Utah, and Minnesota) and one Canadian province (Ontario). Their results 

indicated that the number of RWIS stations required would depend on the topographical 

characteristics of the regions under investigation (i.e., more stations are needed in mountainous 

regions than in flatter areas). Although their findings have been well-received, the study would 

benefit from incorporating larger case studies and other variables that can be used to establish a 

concrete RWIS planning guideline for regions with no RWIS stations. 

Motivation of the Study 

The main motivation of this study was to extend the research team’s previous work by including 

more case studies and by further investigating the dependency of optimal RWIS densities on data 

that are readily available in regions that need a long-term strategic RWIS deployment plan. The 

two measures that the research team is particularly interested in are topographic position index 

(TPI) and winter severity index (WSI). TPI is a commonly used topographic measure that 

defines the relative topographical variation of an area of interest and its neighborhood, whereas 

WSI is an aggregate indicator of weather severity using yearly average snowfall accumulation 

and duration, annual duration of blowing snow, and yearly duration of freezing rain (Weiss 2001, 

Jenness 2006, Mewes 2012). Since both measures are commonly available and believed to 

influence the number of RWIS stations required, they could be used to develop new RWIS siting 

guidelines. Furthermore, previous studies dealt solely with spatial domain, which does not 

account for the inherent temporal correlation of road weather and surface conditions. As road 

surface conditions vary over both space and time, it is necessary to include the temporal domain 

to achieve more accurate results of RWIS density and location optimization.  

Objectives  

RWISs play an important role by helping transportation maintenance operations to keep 

roadways clear of ice and snow for improved safety and mobility of the traveling public. To 

maximize the benefits of such systems, transportation agencies strive to answer two key 

questions: where should we locate RWIS stations, and how many do we need in a region with 

varying environments to provide sufficient coverage over space and time? In this study, the 

researchers attempted to answer both questions by proposing a new method based on a 

spatiotemporal geostatistical semivariogram analysis of RWIS data in an effort to determine the 

topographical and weather characteristics of a region, and how they are related to optimal RWIS 

densities. In particular, the study examined the connection between the spatiotemporal 

autocorrelation range of RWIS measurements and the topographic and weather characteristics of 

different zones. The project had the following specific objectives:  

 Investigate the topographic and weather characteristics of the study area 

 Investigate spatiotemporal autocorrelation of RWIS measurements (i.e., RST) using large 

scale case studies 

 Examine the effect of topography and weather severity of regions on spatial and temporal 

continuity of RST data 

 Develop an RWIS optimal density chart that can facilitate the decision-making process for 

planning a long-term RWIS deployment strategy 
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 Evaluate the leveraging effect of existing RWIS stations in neighboring regions 

The outcome of this study can be used as a guideline for an RWIS network expansion plan that 

applies to different topographic and weather severity zones without having to gather any 

additional data.  



7 

2. PROPOSED METHODOLOGY 

The topographic and weather characteristics of the study area were analyzed to create several 

topographically unique regions within the study area with varying levels of winter severity. 

Spatial semivariogram models were generated for each TPI and WSI class and the change of 

spatial ranges was evaluated with terrain variability and weather severity classes. Spatiotemporal 

semivariogram models were then developed to examine spatial and temporal autocorrelation of 

RWIS data. The effective spatial and temporal range of continuity was determined under 

different topographic and weather settings, and the dependency of weather data on the 

topographic variation and weather severity of the region were also evaluated. Then, the optimal 

density of RWIS stations was determined using the modified particle swarm optimization (PSO) 

method for different topographic and weather classes to develop a TPI-WSI zone-based optimal 

RWIS density chart. Lastly, the density optimization results were used for state-wise application 

and location allocation under different criteria. An overview of the proposed methodology is 

presented in Figure 2.  

 

Figure 2. Overview of the proposed methodology 
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Characterizations of Topography and Weather 

To evaluate the relationship among RWIS station density, topographic variability, and weather 

characteristics for the regions under investigation, the study area was initially classified into 

topography and weather-based classes. TPI was calculated using the digital elevation model 

(DEM) data based on Jenness’s algorithm (Jenness 2006). According to the TPI values, the study 

area was classified into three different landform groups (flatland, hilly, and mountainous). The 

WSI parameter was used for weather-based classifications using the software ArcGIS and the 

shapefile generated for the United States by Meridian Environmental Technology, Inc. (Mewes 

2012). Lower WSI values indicate a less severe weather zone, whereas higher severe weather 

zones are associated with higher WSI values. 

Topography Based Analysis 

Topographic analysis was performed using the TPI. TPI values compare the elevation of every 

point in a DEM to the mean elevation of a specified neighborhood around that cell. Hence, the 

value of TPI defines the topographic variation of a region. Higher TPI values indicate hilly and 

mountainous areas whereas lower TPI values represent flatlands (Weiss 2001, Jenness 2006). 

The TPI calculation algorithm, which was provided by Jenness Enterprises, is the most 

promising and widely used algorithm for landform classification (Jenness 2006, Seif 2014a, 

Mokarram et al. 2015). The equation for TPI for a given location, i, is calculated as follows:  

TPIi = M0 − ∑ Mn
n⁄n−1  (1) 

where,  

M0 = elevation of the model point, i  

Mn = elevation of neighboring points  

n = total number of surrounding points employed in the evaluation  

A neighborhood is defined as a circle or square around the model point. In this study, TPI values 

for each point were calculated by considering a circular neighborhood with a diameter of 50 km 

(31.07 mi) around the point. TPI values are sensitive to the neighborhood size, and this circle 

diameter was selected based on the application. For example, a smaller diameter is appropriate 

for analysis of small landforms such as individual ridges or valley lines, whereas a larger 

neighborhood diameter is appropriate for major topographic landforms (Weiss 2001). 

Positive TPI values indicate that a point is higher than the average elevation of the neighborhood 

while negative TPI values represent locations that are lower than the average elevation. TPI 

values close to zero indicate regions where the elevation is similar to the average elevation of the 

surroundings (Seif 2014b). Relatively speaking, lower average TPI values indicate flatland, and 

higher ranges represent hilly and mountainous regions. An illustrated example of TPI values is 

presented in Figure 3. 
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Figure 3. Example of positive and negative TPI values for a typical land surface 

An elevation map of the study area was generated in ArcGIS using DEM data. A TPI value was 

calculated for every 30 m (98.43 ft) grid point (at the resolution of the DEM) using the 

topography tool that follows Jenness’s algorithm. Later, the area was classified into three zones 

based on the TPI values. 

Weather Severity Index 

A number of previous studies have introduced methods to calculate WSI, which is generally used 

as a decision-support tool to benchmark the expected amount of road maintenance resources 

(e.g., salts) that are required for a given region in a winter season. A common practice of winter 

severity investigation is to generate a daily-basis WSI number using some weather parameters 

and to summarize the numerical values for weekly, monthly, and seasonal WSI (Matthews et al. 

2017a, 2017b). There are many different methods currently available to measure winter severity; 

however, most of the methods are for small geographic area-use only and may not be suitable for 

use for a large area. A large-scale weather severity mapping method was recently developed by 

Meridian Environmental Technology, Inc. for calculating winter severity over the entire US and 

was adopted for use in this study. Parameters used for WSI calculation are yearly average 

accumulation and duration of snowfall and average annual duration of freezing rain and blowing 

snow. Parameters representing weather severity were selected through an iterative process based 

on previous experiences of Meridian and the solicitor’s interest. Data acquisition details for WSI 

measurement are as follows:  

 Snowfall accumulation data from National Weather Service’s (NWS’s) United States 

Climate Normals for the time period of 1971 to 2000 and snow precipitation data from Snow 

Data Assimilation System (SNODAS) for the winter seasons of 2004 to 2011 

 Snowfall duration data from the Meteorological Terminal Aviation Routine Weather Report 

(METAR) observation of weather stations from the Federal Aviation Administration (FAA) 

and NWS for the winter seasons of 2000 to 2010 and analysis of precipitation type from the 

North American Mesoscale Forecast System (NAM) through the National Operational Model 

Archive and Distribution System (NOMADS) for the winter season of 2004 to 2011  

 Average annual duration of freezing rain data from METAR observation from 2000 to 2010 

winter seasons and analysis of precipitation type from NAM model from 2004 to 2011 winter 

seasons  

 Hours of blowing or drifting snow was estimated from wind speed data using the NAM 

model through NOMADS and 1 km advanced very high resolution radiometer (AVHRR) 

based land cover data from the University of Maryland for the winter seasons of 2004 to 

2011 
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The formula used for WSI calculation provides equal weights for all listed factors. As the unit of 

snowfall accumulation was in inches and annual duration of snowfall, blowing snow, and 

freezing rain was calculated in hours, the typical inches to hours weighting ratio of 10:1 was 

applied. For extra caution and to be proactive, a double weighting factor was provided for the 

duration of freezing rain. There is no specific explanation for the index values other than it being 

a relative comparison of winter severity from a winter maintenance viewpoint (Mewes 2012). 

The resulting WSI formula is shown as follows: 

Winter Severity = 0.50 × (annual average snowfall in inches) + 0.05 × (annual snowfall duration 

in hours) + 0.05 × (annual duration of blowing snow in hours) + 0.10 × (annual duration of 

freezing rain in hours) 

Spatial Variogram Modeling  

In this study, geostatistical approaches were used for spatial continuity analysis. A 

semivariogram is a plot of mean semivariance on the y-axis versus separation distance between 

point pairs on the x-axis (i.e., lag size). Semivariance is a statistic that measures the level of 

similarity or dissimilarity between two measurements as a function of separation distance (Olea 

1999). Semivariance can be calculated by taking the average of the squared differences between 

measurements in a spatial domain separated by a specific and defined lag distance, as defined in 

equation 2. 

γ(h) =
1

2n(h)
∑ [z − z(xi)]

2n(h)

i=1
 (2) 

where, γ(h) is the semivariance; z(xi + h) and z(xi) are two measurements taken at location xi 

and (xi + h), which are separated by a lag with distance, h. Figure 4 shows a typical 

semivariogram plot.  
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Figure 4. Typical semivariogram with parameters 

Three basic parameters are used to define a semivariogram model: range, nugget, and sill. The 

value at the origin (zero separation distance) should theoretically be zero. However, due to 

measurement and sampling errors, the value of the semivariogram at the origin could differ 

significantly from zero, and this error is known as the nugget effect. The semivariance value at 

which the semivariogram levels off is known as the sill parameter. Generally, a partial sill is the 

difference between the actual sill value and the nugget effect, which is often the case in a 

semivariogram analysis. The distance at which the semivariogram reaches the sill value is known 

as the spatial range of autocorrelation, or autocorrelation range. Autocorrelation is considered as 

zero beyond this spatial range. Three commonly used semivariogram model forms were 

considered in this analysis (Bohling 2005, Olea 2006, Solana-Gutiérrez and Merino-de-Miguel 

2011). The underlying models are shown in equations 3 to 5. 

Spherical model: g(h) = {c. (1.5 (
h

a
) − 0.5 (

h

a
)
3

)  if h ≤ a

c otherwise
  (3) 

Gaussian model: g(h) = c. (1 − exp (
−3h2

a2 )) (4) 

Exponential model: g(h) = 𝑐. (1 − 𝑒𝑥𝑝 (
−3ℎ

𝑎
)) (5) 

where,  

h = lag distance 

a = spatial range of continuity 

c = sill 
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The best-fitting semivariogram models were selected based on their cross-validation results 

(mean standardized error, correlation between the predictors and observed values, and root mean 

square error). The semivariogram parameters are used for linear interpolation using kriging, 

which is a commonly used geostatistical interpolation technique that predicts values at 

unsampled locations using the weighted averages of surrounding measured observations. 

Weights are assigned based on the semivariogram model. Commonly used kriging methods are 

simple kriging (SK), ordinary kriging (OK), and regression or universal kriging (RK or UK). The 

main difference between simple and ordinary kriging estimation methods is that SK assumes a 

constant and known mean over the sampling domain, whereas OK assumes an unknown and 

constant mean. RK and UK are equivalent interpolation techniques that model the trend 

component of the response variable as a function of either a set of independent predictor 

variables (as in the deterministic trend component in RK) or as a function of spatial coordinates 

(X and Y). The basic equation of kriging is given in equation 6. 

Z∗(X0) = ∑ iZ(Xi)
n
i=1  (6) 

where, Z∗(X0) is the estimated value at location X0, Z(Xi) is the measured observations at 

sampling sites Xi, i is the kriging weight, and n is the number of sampling locations within the 

search neighborhood. The kriging weight for each sampling location is estimated based on the 

parameters of the semivariogram model as well as relative distance of the specific point with 

other sampling points and the unknown point (Lichtenstern 2013, Kwon et al. 2017). However, 

uneven smoothing is observed in the kriging interpolated surface where smoothing is inversely 

proportional to data density. This smoothing issue is addressed by geostatistical simulation 

methods. Sequential Gaussian simulation (SGS) is one of the most commonly used stochastic 

simulation methods that generates an infinite number of equiprobable realizations using a kriged 

surface generated from a normal-score-transformed dataset (Olea 1999). Normal score 

transformation (NST) transforms the dataset to a standard normal distribution. The formula for 

NST for a variable of interest, Z, is given in equation 7.  

Y(Xa) = G−1[F∗(Z(Xa))] (7) 

where, Xa is sampling location with a = 1, 2, 3, …, n; F* is the cumulative distribution function 

(CDF) of Z, and G−1(. ) is the inverse Gaussian CDF of the random function Y(Xa). The normal 

score transformed data is back-transformed by applying the inverse of the NST equation. The 

basic procedure for generating a realization is to define a regularly spaced grid surface of the 

study area and create a random path through the grids in such a way that each grid is visited once 

in each sequence. A simulated value for each grid is generated from the estimated conditional 

CDF, which is estimated using the kriged surface generated from the available dataset. The 

simulated value of each grid cell is added to the conditioning dataset for simulating the values of 

other grid points until all the points in the study area are simulated. For generating the next 

realization, the same procedure is repeated using a different random path (Chen et al. 2012). In 

this study, a 5 × 5 km gridded fishnet of points was generated for each TPI or WSI class, and the 

associated value was extracted from the SGS surface for each specific class. Finally, a 

semivariogram was generated using the extracted RST values, and the semivariogram range was 

used for RWIS density optimization.  
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Spatiotemporal Semivariogram Modeling 

Spatiotemporal semivariogram modeling was used in this study to evaluate the spatiotemporal 

variability of RWIS measurements. RWIS data for a winter season were downloaded and 

processed, and a space-time matrix was formulated as an input of the spatiotemporal analysis. 

The dataset was classified based on previously developed TPI and WSI classes, and a separate 

analysis was conducted for each month and zone, which were aggregated to generate a seasonal 

spatiotemporal autocorrelation range for the TPI and WSI classes. Optimal RWIS densities were 

then determined by relying on spatiotemporal semivariogram analysis results. Density per unit 

area was calculated and compared for different topographic and weather-based zones.  

Geostatistical spatiotemporal semivariogram modeling was used in this study for spatial and 

temporal continuity analysis. The traditional spatial analysis is incorporated with temporal 

analysis to consider both spatial and temporal effect. Spatiotemporal analysis is conducted for 

variables that vary over space and time. A set of variables in a spatiotemporal field can be 

defined as 𝑧 = {𝑧(𝑠, 𝑡)|𝑠 𝜖 𝑆, 𝑡 𝜖 𝑇}, where, S = spatial domain and T = temporal domain. Thus, 

the general equation of a random field, Z, is -𝑧𝑖 = 𝑍(𝑠, 𝑡), 𝑖 = 1,2,3, … . . 𝑛 × 𝑇, where, n = 

number of stations and T = number of time points. The random fields Z (s, t) can be modeled as 

𝑍(𝑠, 𝑡) =  µ (𝑠, 𝑡) + 𝜀 (𝑠, 𝑡), where, μ (s, t) = the deterministic part (trend) and ε (s, t) = the 

stochastic part (RESSTE Network 2017). The stochastic part is used for spatiotemporal 

semivariogram modeling. Spatial and temporal variance is estimated as half of the mean squared 

difference between pairs of data separated by a user-defined spatial (hs) and temporal lag (ht) as 

given in equation 8 (Gething et al. 2007, Shekhar and Xiong 2008). 

𝛾(ℎ𝑠, ℎ𝑡) =
1

2𝑛(ℎ𝑠,ℎ𝑡)
∑ [𝑧(𝑠𝑘, 𝑡𝑘) − 𝑧(𝑠𝑘 + ℎ𝑠, 𝑡𝑘 + ℎ𝑡)]

2𝑛(ℎ𝑠,ℎ𝑡)
𝑘=1  (8) 

where,  

γ (hs,ht) = estimated semivariance value  

n (hs,ht) = total number of pairs in analysis domain  

z (sk,tk) = measurement at spatial location sk and temporal location tk  

A three-dimensional spatiotemporal semivariogram is presented in Figure 5. 
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Figure 5. Typical spatiotemporal semivariogram 

As the estimated model is irregular, a mathematical model was used for smoothening the 

empirical variogram. The covariance models generally used for spatiotemporal variogram 

modeling are discussed in the following section. 

Covariance Models 

A number of covariance models are used for spatiotemporal semivariogram modeling. The most 

popular and widely used models are described in the following sections (Pebesma and Gräler 

2012, Pebesma et al. 2019; Gräler et al. 2016). 

Separable Covariance Model 

It is assumed in this model that the spatiotemporal covariance function can be represented as the 

product of a spatial and temporal term. The covariance function can be written as 𝐶𝑠𝑒𝑝(ℎ, 𝑢) =

𝐶𝑠(ℎ)𝐶𝑡(𝑢). Thus, the equation of the variogram is 𝛾𝑠𝑒𝑝(ℎ, 𝑢) = 𝑠𝑖𝑙𝑙. (𝛾𝑠(ℎ) + 𝛾𝑡(𝑢) −

𝛾𝑠(ℎ)𝛾𝑡(𝑢). Spatial and temporal sill is ignored in this model and kept constant at 1. A joint sill 

(= 1) is used; which combines both spatial and temporal effects. 

Product-Sum Covariance Model 

This model assumes a new parameter, k, as a weighting factor of the product (k > 0). The 

equation for the covariance function is 𝐶𝑝𝑠(ℎ, 𝑢) = 𝑘. 𝐶𝑠(ℎ)𝐶𝑡(𝑢) + 𝐶𝑠(ℎ) + 𝐶𝑡(𝑢). The 

equation for the variogram can be written as 𝛾𝑝𝑠(ℎ, 𝑢) = (𝑘. 𝑠𝑖𝑙𝑙𝑡 + 1)𝛾𝑠(ℎ) + (𝑘. 𝑠𝑖𝑙𝑙𝑠 +

1)𝛾𝑡(𝑢) − 𝑘𝛾𝑠(ℎ)𝛾𝑡(𝑢). The expression of joint sill is 𝑠𝑖𝑙𝑙𝑠𝑡 = 𝑘. 𝑠𝑖𝑙𝑙𝑠. 𝑠𝑖𝑙𝑙𝑡 + 𝑠𝑖𝑙𝑙𝑠 + 𝑠𝑖𝑙𝑙𝑡, 
where, the spatial and temporal nugget is ignored and kept constant at 0; joint nugget is used to 

account for both spatial and temporal effects. 
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Metric Covariance Model 

Identical spatial and temporal covariance functions are assumed in this model, except for 

spatiotemporal anisotropy. Spatial, temporal, and spatiotemporal distances are treated equally in 

a joint covariance model by matching space and time by spatiotemporal anisotropy parameter, 

k(stAni). The equation for the covariance function is 𝐶𝑚(ℎ, 𝑢) = 𝐶𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). The 

equation for the metric variogram can be written as 𝛾𝑚(ℎ, 𝑢) = 𝛾𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). Temporal 

distances are internally re-scaled to an equivalent spatial distance to determine the equivalent 

factor in terms of dependence of 1 m separation in a second or a minute. The expression of 

spatiotemporal anisotropy is 𝑘(𝑆𝑡𝐴𝑛𝑖) =
Spatial unit

Temporal unit
=

m

Sec/min
. 

Sum-Metric Covariance Model 

This model is a combination of spatial, temporal, and metric models. The equation for a 

covariance function is 𝐶𝑠𝑚(ℎ, 𝑢) = 𝐶𝑠(ℎ) + 𝐶𝑡(𝑢) + 𝐶𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). The equation for a 

sum-metric variogram can be written as 𝛾𝑠𝑚(ℎ, 𝑢) = 𝛾𝑠(ℎ) + 𝛾𝑡(𝑢) + 𝛾𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2). 

Spatial, temporal, and joint nugget are estimated separately in this model. 

Simple Sum-Metric Covariance Model 

This model is the simplified version of the sum-metric model to restrict the spatial, temporal, and 

joint variograms to nugget free models. A single spatiotemporal nugget is introduced in this 

model. The equation for a variogram is 𝛾𝑠𝑠𝑚(ℎ, 𝑢) = 𝑛𝑢𝑔. 1ℎ>0,𝑢>0 + 𝛾𝑠(ℎ) + 𝛾𝑡(𝑢) +

𝛾𝑗𝑜𝑖𝑛𝑡(√ℎ2 + (𝑘. 𝑢)2), where spatial, temporal, and joint nuggets are set to 0; only joint nugget 

is fitted.  

As several previous studies attested to the superior performance of sum-metric model in fitting 

the spatiotemporal variogram using environmental parameters (i.e., smallest mean squared 

errors), this model was selected and used in this analysis (Hu et al. 2017, Ahmed 2018).  

Location Optimization via SSA 

Few research studies have used geostatistical approaches to determine an optimal RWIS density 

and set of locations. In a study by Kwon et al. (2017), location optimization of RWIS stations 

was formulated as an integer programming problem, where the objective function was designed 

to minimize the spatially averaged kriging variance across the road network (Kwon et al. 2017). 

The problem was formulated on a basic premise that data from individual RWIS in a region 

should collectively be used to maximize their overall monitoring quality. The method developed, 

for the first time, provided decision-makers with the freedom to simulate and optimize their 

RWIS network by balancing the needs of the road users, winter road maintenance requirements, 

and other respective priorities in locating RWIS stations. As such, the underlying idea presented 

therein has been adopted and implemented in this study. 
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To improve the generalization potential, spatiotemporal semivariogram parameters generated 

from different weather and topographic classes were used in the location optimization process as 

representative of the spatial characteristics of the zones. The highway road network of each state 

was used as the boundary wherein the solution was limited for location optimization of that 

specific state. A 5 × 5 km prediction grid was generated along the road network in ArcGIS to 

create the candidate sites for RWIS station placement. The objective function was formulated to 

minimize the mean kriging estimation variance. 

The equations of the objective function and its related computation process are shown in 

equations 9 through 12. 

G =

[
 
 
 
 
γ(x1, x1) γ(x2, x1)…  γ(xk, x1) 1

γ(x1, x2) γ(x2, x2)…  γ(xk, x2) 1
…

γ(x1, xk) γ(x2, xk)…  γ(xk, xk) 1
1                1              …          1       0]

 
 
 
 

 (9) 

where, xi (i=1, 2, …, k) is the sampling site of a sample subset of size k, and in this case, k is 

equal to the number of RWIS stations, and γ(xi, xj) is the semivariance between sampling site i 

and j.  

g = [γ(x0, x1) γ(x0, x2)…  γ(x0, xk) 1]′  (10) 

where, x0 is the estimation location and xi (i=1, 2, …, k) is the sampling site of a sample subset 

of size k. Then, the minimum mean squared error for ordinary kriging for the estimation location 

x0 is: 

σOKI
2 (x0) = g′G−1g  (11) 

Based on above three equations, the objective function of this work can be formulated as 

follows:  

f(w) =
∑ σOKI

2 (x0)n−k
i=1

n
  (12) 

where,  

𝑛 = total number of candidate RWIS station locations in the study area 

Spatial optimization requires mathematical and computational methods to find optimal solutions 

for an objective function, which is usually performed under some constraints. For the large-size 

optimization problem, a heuristic algorithm is a suitable and effective method for finding the 

solutions (Revelle et al. 2008). The optimization method implemented in this study was SSA 

(Kwon et al. 2017), which is a spatial counterpart to simulated annealing (SA) (Kirkpatrick et al. 
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1983). SSA is a popular heuristic algorithm used to solve spatial optimization problems (van 

Groenigen and Stein 1998, van Groenigen et al. 1999, Heuvelink et al. 2006, Brus and Heuvelink 

2007, Kwon et al. 2017). SSA works by slightly perturbing previous sampling designs using 

random search techniques (van Groenigen et al. 1999). As optimization continues, it is necessary 

to avoid local minima, and thus SSA not only accepts improving solutions but also worsening 

solutions based on a certain probability (van Groenigen and Stein 1998). The probability of 

accepting worsening solutions is typically set initially at 0.2, and this probability decreases 

exponentially to zero as a function of the number of iterations (Kirkpatrick et al. 1983, 

Heuvelink et al. 2006, Brus and Heuvelink 2007). The workflow of SSA for a certain number of 

RWIS stations is displayed in Figure 6. 

 

Figure 6. Workflow of spatial simulated annealing  

The objective function of this algorithm was the mean OK prediction error variance based on a 

predefined number of RWIS stations. Optimization follows an iterative process where stations 

are added one by one into the study area, and locations are selected based on heuristic attempts to 

minimize the objective function. Location and density distribution optimization was performed 

in the study area made up of 14 states. This was done over two installation strategies effectively 

known as all-new and expansion plans. The all-new plan explores a case where all existing 

RWIS stations are relocated to their optimal locations for comparison. It is called all-new as it 

also may be used to optimize the installation of a new RWIS network from scratch. The 
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expansion plan assumes a staged expansion program where 10 RWIS stations are installed per 

stage to an existing network. Two expansion stages were implemented for this study. 

Three different scenarios were used for location optimization: (1) considering weather only, (2) 

considering traffic only, and (3) considering both (both weather and traffic). The number of 

iterations was set to 10,000, after which the search process for new RWIS station locations was 

set to stop. An additional stopping criterion was also used such that if there was no improvement 

in the objective function after 200 iterations, the algorithm is set to automatically stop. The 

results of the location optimization are shown in Chapter 4. 

Density Optimization via PSO 

Density optimization in this study was conducted in order to compare the number of RWIS 

stations needed per unit area in different TPI- and WSI-based classes. Semivariogram parameters 

generated from different classes were used in the optimization process as representative of the 

spatial characteristics of the zones. A randomly selected square region (area of 10,000 km2) 

within the study area was used as the experimental boundary wherein the solution was limited 

for density optimization of all classes. Following the same procedure for generating the optimal 

location solutions, RWIS density curves for different TPI and WSI zones were generated based 

on a predefined number of RWIS stations. The marginal increment of benefit associated with 

each additional RWIS station was calculated to determine the optimal RWIS density.  

Density optimization in this project was conducted using PSO. PSO is an evolutionary 

computation technique and population-based global optimization method developed by Kennedy 

and Eberhart in 1995 (Eberhart and Shi 2001). PSO is widely used and popular in scientific 

computations, because it is easily implemented and computationally inexpensive. In this 

optimization process, a number of n-dimensional candidate points (particle) are placed in the 

search space of a function and each of the particles evaluates the objective function at its current 

location. Each particle can be assumed as a potential solution presented by velocity and position 

(Wang et al. 2013, Gu et al. 2019). Movement of each particle is determined based on its best fit 

location with one or more swarms, and the algorithm searches for optima by updating the 

generations (Kennedy and Eberhart 1995, Poli et al. 2007). The ith particle in the search space 

can be represented as xi = (xi1, xi2,…, xin). Each particle in the swarm flies to the previous best 

position and global best position; those are named as pbest and gbest, respectively. The best 

previous position of the ith particle can be presented as pi = (pi1, pi2,…, pin). The index of the 

best particle in the swarm is represented by the subscript g. The velocity of particle movement is 

represented by vi = (vi1, vi2,…, vin). The particle is attracted by pbest and gbest during the 

search process according to equations 13 and 14. 

𝑣𝑖𝑑 = 𝜔𝑣𝑖𝑑 + 𝑐1𝜁(𝑝𝑖𝑑 − 𝑥𝑖𝑑) + 𝑐2𝜂(𝑝𝑔𝑑 − 𝑥𝑖𝑑), (13) 

𝑥𝑖𝑑 = 𝑥𝑖𝑑 + 𝑣𝑖𝑑,  (14) 
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where, d = dimension, representing the total number of candidate RWIS sites, where 1 ≤ d ≤ n; 

𝑐1 and 𝑐2 are positive constant; 𝜁 and 𝜂 are random adjustment factors with a range of 0 to 1; and 

𝜔 is the inertia weight. The performance of each particle is measured using a predefined fitness 

function. A binary particle swarm optimization (BPSO) was proposed by Kennedy and Eberhart 

(1997) for solving integer-programming problems, as the original PSO was not suitable in this 

case. The basic difference between these two methods is in updating of the particles’ position. 

The sigmoid function is utilized in BPSO where every dimension in the position becomes a 

number between 0 and 1. A modified BPSO was proposed by Gu et al. (2019) to solve the RWIS 

location optimization problem. A similar method was adapted for use in this current study for 

region-wise RWIS density optimization. Position of particle was updated using equation 15. 

𝑥𝑖𝑑 =
1

1+𝑒−𝑣𝑖𝑑
,  (15) 

In the modified BPSO, a threshold probability, r, is set to control whether the xid becomes 1 or 

not, where 1 represents the selection of the element. During optimization, the total number of 

RWIS stations (m) is set as a constant, and the algorithm is set to select best-fit ‘m’ number of 

locations in the search space. The original BPSO shows premature convergence because of a 

quick loss of diversity. To treat this problem, more randomness is added into the internal 

mechanism of the modified BPSO in order to expand the search space and allow the particle to 

escape from any possible local minima. Another addition is that if more than one location has the 

same probability for an RWIS station, a mechanism is set in the modified BPSO to randomly 

select one of them as the solution. Lastly, in addition to the maximum velocity set to control the 

speed of convergence, the inertia weight (ω) and self-learning factor (c1) are set to decrease from 

0.9 to 0.4 and 2 to 0, respectively, in the search process. On the other hand, the society-learning 

factor (c2) is set to increase from 0 to 2. The parameters were chosen to ensure that the particles 

can fly slowly while eliminating their ability for self-learning and enhancing social-learning. The 

steps associated with the modified BPSO algorithm are as follows (Poli et al. 2007, Wang et al. 

2013, Gu et al. 2019): 

 Step 1. ‘m’ particles are initialized with dimensions of velocity. 

 Step 2. Velocities are converted to positions (probabilities) using the sigmoid function 

(equation 8). 

 Step 3. Two top probabilities are selected in each particle’s position, and they are set to the 

selected candidate points for locating RWIS stations; then, ordinary kriging variance is 

calculated for all the unknown points as the fitness value.  

 Step 4. Memorize the current individual best positions and the global best positions. 

 Step 5. Update ω, c1, and c2 using equations 16, 17, and 18. 

𝜔𝑛𝑒𝑤 = 𝜔𝑜𝑙𝑑 −
𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
, (16) 

𝑐1𝑛𝑒𝑤 = 𝑐1𝑜𝑙𝑑 −
𝑐1𝑚𝑎𝑥−𝑐1𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
, (17) 
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𝑐2𝑛𝑒𝑤 = 𝑐2𝑜𝑙𝑑 −
𝑐2𝑚𝑎𝑥−𝑐2𝑚𝑖𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠
, (18) 

 Step 6. Update each particle’s velocity using equation 19. 

𝑣𝑖𝑑 = 𝜔𝑣𝑖𝑑 + 𝑐1 ∗ 𝜁𝑖𝑑 ∗ 𝛥𝑥𝑝𝑖𝑑 + 𝑐2 ∗ 𝜂𝑖𝑑 ∗ 𝛥𝑥𝑔𝑖𝑑,  (19) 

If the 𝑣𝑖𝑑 > 𝑣𝑚𝑎𝑥, then 𝑣𝑖𝑑 = 𝑣𝑚𝑎𝑥. 

 Step 7. Update particles’ positions using equation 8. 

 Step 8. Update the individual best position and global best position by comparing fitness 

values. If updated fitness value is smaller than before, accept the new solution and check if 

the new solution meets the stopping criterion (i.e., a predefined number of RWIS). If not, 

repeat the process from Step 2.  
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3. STUDY AREAS AND DATA DETAILS 

Study Areas and RWIS Network 

The study area is comprised of 14 states, which also happens to be a part of the Aurora RWIS 

project. These 14 states were chosen based on the availability of the necessary datasets to run 

both the location optimization and the density distribution of the RWIS stations. A calibration 

and exploration of the methodology was done on eight states that had the required data 

availability and level of completeness in order to do so. This subgroup is called the calibration 

states. However, three of the eight states, namely Wyoming, Nebraska, and Kentucky, did not 

have sufficient transportation-related data available at the time to run the optimization analysis 

and thus were not included as part of the study area for optimization. Once the calibration was 

done, it was then applied to the 14-state study area. This section details the study area and the 

data used.  

The study area for spatiotemporal analysis and RWIS density optimization was selected based on 

RWIS data availability and distribution of RWIS stations to cover a variety topography and 

weather conditions that may pose challenging driving conditions. Only eight states had sufficient 

data, RWIS station coverage, and the minimum number of stations for the team’s analysis; those 

states include Colorado, Iowa, Kansas, Kentucky, Minnesota, Nebraska, Ohio, and Wyoming. 

These eight states provided a broad enough region, as well as a range of topographic and weather 

conditions, in which to explore the research team’s approach. The total available RWIS station 

count for the states are 147, 86, 56, 38, 98, 70, 182, and 81, respectively. The study period 

selected for this project included a winter season (October 2016 to March 2017) to best capture 

challenging winter driving conditions. The distribution of RWIS stations for the study area is 

presented in Figure 7. 

 

Figure 7. Distribution of RWIS stations for eight US states 

The spatiotemporal semivariogram analysis results were then applied to RWIS location 

optimization for 14 states presented in Figure 8. These 14 states already have RWIS stations 

installed and served as a basis for comparing the optimized locations to the current locations. 
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Figure 8. Study area for location optimization 

The total available RWIS station count for the additional states are: 23 for California, 19 for 

Delaware, 59 for Illinois, 97 for Michigan, 29 for North Dakota, 19 for Pennsylvania, 98 for 

Utah, 52 for Virginia, and 59 for Wisconsin.  

Data Description 

The description of various data sources that are used in this study are described in this section. 

Topography Data 

A DEM with resolution of 30 m data (28 GB) was downloaded from the U.S. Geological Survey 

website (https://earthexplorer.usgs.gov/) for topographic characteristic analysis in ArcGIS 

10.4.1, which happens to encompass 20 state DOTs. The resulting TPI map file has a size of 49 

GB. However, only the 14 aforementioned states in the study area were used in this report. 

Weather Severity Data 

The ArcGIS shapefile generated by Meridian Environmental Technology, Inc. was used for 

weather severity analysis.  

RWIS Data 

RWIS data for the states of Colorado, Iowa, Kansas, Kentucky, Minnesota, Nebraska, North 

Dakota, Ohio, Virginia, Wisconsin, and Wyoming were downloaded from the Iowa State 
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University mesonet project site (http://mesonet.agron.iastate.edu/RWIS/). The RWIS data for 

California, Delaware, Michigan, Pennsylvania, and Utah were obtained from their respective 

DOT open data database network. The statewide RWIS data were downloaded as an Excel file. 

Measurements from a typical RWIS station include, but are not limited to, air and surface 

temperature, visibility, wind speed, and road surface conditions, collected at 15 to 20 minute 

intervals. In total 1,026 stations were included in the analysis, and 4,368 hours of data were used.  

Traffic Volume Data 

Annual average daily traffic (AADT) data for the year 2017 were downloaded from the Traffic 

Monitoring Management System (TMMS) section of the Ohio DOT website 

(http://www.dot.state.oh.us/Divisions/Planning/TechServ/Pages/default.aspx). AADT data 

include location description, details of route, AADT, and some other information. The size of the 

AADT data covering 8,760 hours of observations was 2.22 GB. 

Data Processing 

The RWIS data were processed to remove the missing and erroneous data using five steps:  

1. Conducting data completeness test to identify missing data  

2. Conducting reasonable range test to find erroneous data  

3. Cross-checking RST data with air-temperature data  

4. Analyzing RST data pattern  

5. Detrending RST data with respect to time using the generalized additive model (GAM)  

Data completeness was checked by identifying the total missing data for each sensor. If the total 

missing data was more than 15%, the associated sensor ID was marked, and the data from that 

sensor were not used for analysis. Reasonable range was tested based on historical data ranges 

for the associated region and month. Filtered RST data were then cross-checked with air-

temperature data ranges for any possible outliers. An RST data pattern analysis was performed 

by plotting the day of the month versus the average daily temperature for all selected sensors, for 

each state, and each month. All selected sensors were expected to show a similar pattern 

throughout the month. If any unusual pattern was noticed, the RST data for the associated 

sensors were further investigated for the time period of the unusual pattern. In total, 48 sets of 

data (six months for the eight calibration states) were analyzed using the above-described 

process. Finally, RST data was detrended with respect to time using a GAM, where GAM 

worked as a generalized linear model with linear predictors. The GAM function was formulated 

as 𝑚 = 𝛽0 + 𝑓1(𝑥1) + 𝑓2(𝑥2) + ⋯+ 𝑓𝑖(𝑥𝑖), where, m = variable of interest, 𝛽0 = intercept, 

𝑓𝑖(𝑥𝑖) = smooth function of predictor xi. The smooth function can be expressed as 𝑓𝑖(𝑥𝑖) =
∑ 𝑠(𝑥𝑛)𝑚

𝑛=1  (Hastie and Tibshirani 1990, Wang et al. 2019). 

Descriptive statistics (means and standard deviations) revealed relatively less variation in 

average monthly temperatures in the mid-winter months than in the shoulder months. Overall 

minimum and maximum temperatures for the study area were: -30.3°C to 51.5°C (-22.5°F to 

http://www.dot.state.oh.us/Divisions/Planning/TechServ/Pages/default.aspx
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124.7°F). Table 1 presents the maximum, minimum, average, and standard deviations of RST for 

the study area. Because of erroneous data in November 2016 in Kentucky, it was excluded from 

the analysis.  

Table 1. Descriptive statistics of RST for the calibration states 

Month- 

Yr RST 

States 

CO IA KS MN OH KY NE WY 

Oct-16 

Min  -6.7 -1.1 0.8 -2.6 -1.5 -7.2 -6.2 -9.4 

Average 15.5 16.9 20.8 12.6 18.3 20.0 16.7 11.9 

Max 37.8 41.5 46.2 41.0 47.0 39.5 44.7 45.1 

StDev 9.0 6.9 8.2 7.0 6.9 6.9 7.7 8.1 

Nov-16 

Min  -29.8 -8.6 -7.6 -9.9 -24.0 - -12.5 -15.9 

Average 7.6 9.5 12.5 6.0 10.1 - 8.7 5.0 

Max 46.9 38.3 39.5 30.2 35.5 - 34.4 30.6 

StDev 9.2 7.1 7.8 6.2 6.3 - 8.0 8.0 

Dec-16 

Min  -22.6 -29.5 -24.9 -29.9 -19.6 -10.4 -28.1 -29.5 

Average -1.5 -2.7 0.8 -6.6 1.7 4.5 -3.3 -5.4 

Max 26.6 18.8 22.9 11.7 51.5 21.1 17.8 17.6 

StDev 7.4 6.4 7.3 6.8 5.7 4.8 6.2 6.3 

Jan-17 

Min  -26.9 -24.0 -20.9 -30.3 -19.1 -17.2 -26.9 -29.1 

Average -0.6 -2.1 2.7 -6.8 2.9 6.4 -2.5 -5.5 

Max 37.8 19.6 28.5 14.2 25.5 21.8 19.9 21.0 

StDev 7.7 6.0 7.4 7.9 6.3 5.1 6.3 6.9 

Feb-17 

Min  -17.7 -15.9 -10.8 -26.0 -22.7 -9.6 -19.4 -23.4 

Average 6.0 5.6 9.8 -1.5 7.1 9.3 4.4 0.9 

Max 37.7 32.4 38.6 27.2 34.5 30.4 36.1 30.7 

StDev 8.9 8.2 9.0 8.1 7.3 5.9 8.0 7.7 

Mar-17 

Min  -17.2 -16.4 -7.3 -22.0 -10.8 -8.4 -11.5 -17.5 

Average 11.0 7.0 13.9 2.5 9.0 12.1 9.4 7.2 

Max 38.3 36.1 48.7 36.3 36.0 31.7 43.7 39.5 

StDev 10.2 7.6 9.5 8.7 7.1 6.5 8.3 9.3 

 

Figure 9 shows the seasonal maximum, minimum, average, and standard deviation of RST for 

the calibration states. 
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Figure 9. Seasonal road surface temperature details for eight states 

Semivariogram modeling and RWIS location optimization were performed using the R statistical 

package, Version 3.2.5 (Pebesma 2004, Gräler et al. 2016, R Core Team 2018). RWIS density 

optimization was coded in Python. To improve the computational efficiency, all optimizations 

undertaken in this study were run on the supercomputer “beluga” from the University of Alberta, 

managed by Calcul Québec and Compute Canada (https://www.computecanada.ca/), with 32 

central processing units (CPUs), each of which runs on 2.4 GHz CPU and 1 GB memory.  
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4. RESULTS AND DISCUSSION 

TPI and WSI Classes 

Topographic features of 14 US states in the study area were studied, quantitatively described, 

and classified using the TPI. The TPI map of the study area is shown in Figure 10, and the range 

of values was between 565 and 5,293.  

 

Figure 10. TPI map of the 14 US states of the study area 

As the team’s main interest in using TPI-based analysis was landform classification over a large 

geographic area, the absolute value of TPI was used. However, much of the study area had a TPI 

value below 75. More specifically, Delaware, Illinois, Indiana, Iowa, Kentucky, Michigan, 

Minnesota, New York, North Dakota, Ohio, Pennsylvania, Virginia, and Wisconsin, and large 

portions of California, Kansas, and Nebraska had TPI values that were less than 75. This area 

was designated as TPI-1 (i.e., the beige colored zone in Figure 10), that represents the flatland 

area. A few points with a TPI value between 75 and 1,500 can be seen at the edges of California, 

New York, Pennsylvania, and Virginia. Another large part of the study area had a TPI range 

between 1,900 and 2,100 with a minor area of 1,500 to 1,900. This more hilly zone was 

designated TPI-2 (i.e., the gray colored zone in Figure 10), which covers a small part of Kansas 

and sizable portions of Colorado, Nebraska, and Wyoming, and very small parts of California 

and Utah. Large variations in TPI can be seen in the remaining study area including large parts of 

California, Colorado, Nevada, Utah, and Wyoming, where the range in TPI varied from 1,900 to 

5,293, with a minor area under 1,900. This zone was classified as TPI-3, which is a mountainous 

region.  

The study area was also classified into four WSI classes (Figure 11).  
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Figure 11. WSI map of the 14 US states of the study area 

The range of WSI was 7.6 to 301.7. The class WSI-1 (blue colored zones) includes the areas with 

WSI values less than 25. This classification covers nearly all of Delaware, Kansas, Kentucky, 

and Virginia; the lower parts of Illinois and Indiana; small parts of California, Colorado, Nevada, 

Pennsylvania, and Utah. The class WSI-2 (green colored zones) represents a region with a WSI 

range of 25 to 50. Nearly all of Iowa, Nebraska, and Ohio; the southern halves of Minnesota, 

North Dakota, and Wisconsin; the northern parts of Illinois and Indiana; and small portions of 

Colorado, Pennsylvania, Nevada, New York, and Wyoming are captured by this class. Of the 

remaining portion of the study area, a relatively large region is between 50 and 75 WSI and 

between 75 and 100 WSI. This region (50 to 100) was designated WSI-3, and this class includes 

the northern parts of Minnesota, New York, North Dakota, Pennsylvania, and Wisconsin; small 

portions of Colorado and Ohio; and part of Wyoming. The remaining area had large variation in 

WSI values from 100 to 301.7. This area is mountainous and was classified as WSI-4, which is 

quite similar to TPI-3.  

Spatial Semivariogram Modeling Results 

The range of spatial autocorrelation for the study area was examined using semivariogram 

analysis. The RST was selected as the variable of interest for this study as it is one of the most 

widely used weather variables that represents the road surface conditions properly, and it is a 

necessity for improved winter road maintenance operations (Kwon and Fu 2017). Raw RST data 

were processed and semivariogram models were developed using monthly average RST data.  

The range of spatial autocorrelation for the three TPI-based classes and the four WSI-based 

classes are presented in Figure 12.  
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Figure 12. Comparison of spatial range for TPI classes (left) and WSI classes (right) 

As shown, for TPI-1, the flatland area, the average spatial range is highest, followed by TPI-2, 

and TPI-3, suggesting that on average the range of spatial structure (i.e., similarity in conditions) 

decreases as topography becomes more variable. Similarly, decreasing spatial range is observed 

from WSI-1 to WSI-4. Given the limited time periods examined here, a lack of data, and 

clustering of RWIS stations when multiple states were considered together, monthly estimates 

for spatial ranges (the vertical bars in Figure 12) do not always follow the average trend. In 

addition, the spatial range for WSI-1 for the month January is missing because the 

semivariogram developed for this particular month failed to converge, possibly due to a lack of 

samples to capture the underlying spatial autocorrelation structure of the variable of interest. This 

result reveals that the predictive coverage of an RWIS station is dependent on the topographic 

and weather features of a region. Flatter areas had higher spatial ranges and thus require a 

smaller number of RWIS stations to achieve a similar level of monitoring coverage than hilly or 

mountainous regions. Correspondingly, areas with more severe weather conditions require more 

stations to achieve the same level of spatial coverage than areas with less severe weather. This 

phenomenon is examined using density optimization in the following section.  

Spatiotemporal Semivariogram Modeling Results 

RWIS data for the study area were also processed considering both space and time domains on a 

monthly basis, from October 2016 to March 2017. RST data were aggregated using 20 minute 

interval for time domain analysis. A space-time matrix was then formulated for each TPI and 

WSI zone. Spatiotemporal autocorrelation of RST for each study zone was then analyzed using 

spatiotemporal variogram modeling methods using the gstat package in R (Pebesma 2004, R 

Core Team 2018). A sample of spatiotemporal semivariograms of different TPI and WSI classes 

is presented in Figure 13.  
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Figure 13. Sample spatiotemporal semivariogram of TPI and WSI classes for November 

2016 RWIS data 

Seasonal spatiotemporal analysis results for TPI and WSI zones are presented in Figure 14. 

 

 

Figure 14. Spatial semivariogram ranges for TPI classes (top) and WSI classes (bottom) 



30 

According to Figure 14, relatively higher spatial and temporal ranges are obtained for TPI-1 

(flatland area), followed by TPI classes 2 and 3, representing hilly and mountainous areas, 

respectively. Similar results were obtained for weather-based classes, where regions with less 

topographic variation and less severe weather have a higher spatial and temporal range as 

depicted in Figure 15.  

 

 

Figure 15. Temporal semivariogram ranges for TPI classes (top) and WSI classes (bottom) 

The range of autocorrelation decreases with an increase in topographic variation and weather 

severity. In general, there is a trend of higher autocorrelation range during mid-winter months 

compared to shoulder months, which is as expected.  

The effect of weather severity in the TPI-1 zone, which is the flatland area, is presented in Figure 

16.  
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Figure 16. Spatial and temporal range for flatland area (TPI-1) with different weather 

severity 

In the study area, the flatland region consists of three weather severity regions, and there is a 

trend toward a higher autocorrelation range in areas with less weather severity than in areas with 

more severe weather severity regions, especially for the temporal range. The effect of weather 

for the spatial range is negligible as the total difference is only 1.6 km. From this, it can be 

concluded that topography can serve as a more intuitive measure for RWIS network planning 

than that of weather severity. Similar comparisons for other TPI zones have not been made 

because TPI-2 includes WSI-2 and WSI-3 zones; and TPI-3 is identical to WSI-4 (see Figure 10 

and Figure 11). 

Statewide RWIS Implementation Strategies 

Spatiotemporal semivariogram models for different topographic and weather severity regions 

were used for state-wise RWIS network implementation. This section includes the state-wise 

relocation of the current RWIS network for different criteria, statewide expansion of the RWIS 

network, and the effect of spatial demarcation in RWIS network planning.  

A Statewide Relocation of the Current RWIS Network 

This section includes an analysis of the hypothetical problem of optimizing the RWIS network 

for the 14 states such that the current network can be effectively evaluated. The main goal of this 

state-wise relocation was to compare the overall monitoring capabilities of the optimized 

network with the current location settings. The existing station number and location were 

collected from the aforementioned Iowa State University website, and an equal number of new 

RWIS station locations were generated for candidate states using a dual scenario, which 

considered both weather and traffic data with equal weightage. The resulting new locations for 
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the same number of RWIS stations per state are presented in Appendix A, and the specific 

location information is provided in Appendix B.  

A Statewide Expansion of the Current RWIS Network 

The RWIS network expansion plan described herein is a staged expansion where a set of 10 new 

RWIS stations are added at each expansion stage. This study implements two expansion stages to 

the existing RWIS network for the 14-state study area to increase coverage and enhance winter 

maintenance operations. The optimization problem has, therefore, been modified to include the 

existing stations as input and locate the additional stations accordingly. Network expansion 

solutions were generated considering two different criteria: (1) considering weather only and (2) 

considering dual criteria (both weather and traffic). Location plots for adding new stations to the 

existing RWIS network for the study area are presented in Appendix C, and the specific location 

information is provided in Appendix D.  

Effects of Spatial Demarcation 

This section aims to evaluate how existing RWIS configurations in neighboring states influences 

the RWIS optimization process. Iowa, with 86 existing RWIS and six border states, was selected 

as the study area. The methodology was applied to derive two different optimal RWIS location 

sets under two conditions: (1) by considering the RWIS stations of bordering states and (2) 

without considering the RWIS stations of bordering states. The comparison between the results 

for Iowa can be a good reference point with respect to the effects of the bordering states’ RWIS 

stations. Figure 17 presents the RWIS optimization process with and without considering 

bordering states’ effects.  

 

Figure 17. RWIS optimization for Iowa 
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As is shown, by combining the neighboring states’ RWIS, the derived RWIS solutions focus on 

urban areas. To statistically explain the differences, the research team conducted two different 

statistical analyses to compare the similarity between the two RWIS patterns. First was the two-

sample t-statistic for the mean, which suggested the directionality of the surrounding RWIS 

effect. If the centroid distance between the two groups is significantly different, then the 

surrounding RWIS stations can be seen as having an uneven effect on the location optimization 

process of RWIS. The other part is a two-sample F-statistic for variance test. This test showed 

the effect of nearby RWIS locations by resulting in a relatively higher RWIS density in the 

center of the study area.  

The two tests evaluated the directionality and effectiveness of the surrounding RWIS location. 

According to the directionality test, the t-value was found to be 0.21, meaning the effect of 

bordering states does not pose a directional effect. The F-test result is presented in Figure 18.  

 

Figure 18. F-statistic distribution 

The null hypothesis assumed in the F-test was that, Scenario A has the same variance as B. The 

resulting p-value was 0.866, which suggested that there was an 86.6% probability to reject the 

correct null hypothesis. The F-test value was 1.273117, which lies in the 95% critical value 

accepted range: [0.699, ∞]. This result indicated that, Scenario A has a lower variance than B. 

Hence, the deployment of RWIS should take the RWIS of bordering states into consideration. 

RWIS Density Guidelines and Their Statewide Applications 

Development of Optimal RWIS Density Guidelines 

Spatial parameters of a spatiotemporal semivariogram were used as input for density 

optimization for topographic and weather severity zones (three TPI classes and four WSI 

classes). A hypothetical network of 100 km × 100 km was used for density optimization. A 5 km 
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× 5 km prediction grid was generated in ArcGIS to create the candidate sites for RWIS station 

placement. The objective function was formulated to minimize the mean ordinary kriging 

estimation variance and solved via PSO as described earlier.  

The algorithm optimizes the location and density of RWIS stations in an iterative process where 

stations are added one by one into the study area and locations are selected based on heuristic 

attempts to minimize the objective function. The total number of RWIS stations allowed was 

arbitrarily limited to 100 in this study to ensure the variation trend of the estimation error as 

density changes were fully displayed. The number of iterations was set to 5,000, after which the 

search process for new RWIS station locations was set to stop. Prediction errors were normalized 

to make a valid and fair comparison among zonal classes.  

According to the density optimization results, as shown in Figure 19, topographic and weather 

severity classes with larger spatial ranges required a lower number of RWIS stations, except 

WSI-3, which shows a similar trend to WSI-1.  

 

 

Figure 19. Normalized prediction error as a function of RWIS density for TPI classes (top) 

and WSI classes (bottom) 

From the results shown above, TPI classes follow the same behavioral trend: WSI-3 consists 

mainly of northern parts of Minnesota, classified as flatland area (TPI-1) and found to have a 
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lower density of RWIS based on topographic analyses. In addition, the team’s density 

optimization was conducted using all three semivariogram parameters (range, nugget, and sill), 

though the dependency of the semivariogram range upon topographic-weather characteristics of 

the region was the team’s main concern in this analysis. From this, it can be stated that 

topographic measures (TPI) provided a more intuitive and direct relationship with the impact 

than the spatiotemporal range had on optimal density.  

The number of RWIS stations needed for 0.1 unit increment of benefit was calculated from 

Figure 19 and is presented in Figure 20.  

 

 

Figure 20. Number of RWIS stations for benefit increment of 0.1 unit for TPI classes (top) 

and WSI classes (bottom) 

According to Figure 20, the initial 0.1 unit of incremental benefit requires the highest number of 

RWIS stations with each subsequent incremental benefit requiring fewer and fewer additional 

stations. This is as expected because the amount of marginal benefit from additional RWIS 
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stations should decrease as station numbers increase. A similar trend is observed for both TPI 

and WSI classes.  

For determining the optimal RWIS density, marginal benefits were calculated from Figure 19 

and are presented in Figure 21.  

 
(a) 

 
(b) 

Figure 21. Added number of RWIS stations for marginal benefit increment of 0.1 unit for 

(a) TPI classes and (b) WSI classes 

According to Figure 21, the number of added RWIS stations for an initial marginal incremental 

benefit of 0.1 unit is the highest and then the number of additional stations decreases for further 

increments of marginal benefits for both TPI and WSI classes.  

As shown in Figure 20 and Figure 21, the marginal benefit decreases significantly after the 0.3 

unit increment of benefit mark. This was determined as the median of the range and number of 

associated RWIS stations for 0.3 unit increment of benefit increase was defined as the optimal 
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RWIS density. The number of RWIS stations needed for an incremental benefit of 0.2 unit and 

0.4 unit were selected as the upper and lower bound, respectively. The number of RWIS stations 

needed for 0.2, 0.3, and 0.4 unit benefit increment was recorded from Figure 20 and is plotted in 

Figure 22.  

 

 

Figure 22. RWIS density comparison for TPI classes (top) and WSI classes (bottom) 

As shown, RWIS density is the lowest for TPI-1 and increases with an increase in topographic 

variation. Similarly, RWIS station numbers for less weather severe regions are the lowest and 

increase with an increase in weather severity, except WSI-3 for the above noted reasons.  

The density optimization results were used to generate an RWIS density chart for TPI-WSI zones 

and is presented in Table 2.  

0

5

10

15

TPI 1 TPI 2 TPI 3R
W

IS
 d

en
si

ty
 p

er
 u

n
it

 a
re

a

TPI Classes

Lower Bound Average Upper Bound

0

5

10

15

WSI 1 WSI 2 WSI 3 WSI 4

R
W

IS
 d

en
si

ty
 p

er
 u

n
it

 a
re

a

WSI Classes

Lower Bound Average Upper Bound



38 

Table 2. RWIS density for TPI-WSI zones for unit area (1/10000 km2)  

RWIS density 

for unit area 

TPI classes 

TPI-1 TPI-2 TPI-3 

LB Avg UB LB Avg UB LB Avg UB 

WSI 

classes 

WSI-1 1.93 3.25 7.00 2.18 4.00 8.75 2.68 5.00 10.50 

WSI-2 2.30 4.25 9.50 2.55 5.00 11.25 3.05 6.00 13.00 

WSI-3 1.98 3.50 7.50 2.23 4.25 9.25 2.73 5.25 11.00 

WSI-4 2.75 5.25 11.50 3.00 6.00 13.25 3.50 7.00 15.00 

 

On average, three to seven RWIS stations are required for a unit area of 10,000 km2 depending 

on the topographic feature of the landform and weather severity of the region. Such findings can 

readily be used by winter road maintenance agencies for planning a region-wide RWIS network, 

especially for regions with limited or no available RWIS stations. 

Statewide RWIS Density Determination 

The optimal RWIS density was determined for each of the 14 states using Table 2. The optimal 

RWIS density map is presented in Figure 23.  

 

Figure 23. Optimal RWIS density map 

Nine different TPI-WSI combined zones were identified in the study area. The flatland area 

(TPI-1 zone) includes four different weather severity zones named as T1W1, T1W2, T1W3, and 

T1W4 (lighter colored blue area in Figure 23). Weather severity increases from the southern to 

the northern parts of the study area. The optimal RWIS density in these regions varies from 3.25 

to 5.25 stations per unit area (1/10000 km2). The TPI-2 zone, which are hilly areas, combines 
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two different types of weather severity zones in the study area and were named as T2W1 and 

T2W2. These areas include a smaller parts of Colorado, Kansas, and Utah. Four to five RWIS 

stations are needed per unit area in these zones. Mountainous areas (TPI-3 zone) include three 

different types of weather severity zones named as T3W2, T3W3, and T3W4. Very small areas 

of California, Colorado, and Utah are under theT3W2 and T3W3 zones. Most of the 

mountainous areas are under extremely high severe weather regions.  

The area under each TPI-WSI zone was calculated to determine the optimal RWIS density for 

each state. Table 3 presents the suggested RWIS densities for the 14 states in the study area.  

Table 3. Suggested RWIS density for the 14 states 

States CA CO DE IA IL KS MI MN ND OH PA UT VA WI 

RWIS 

density 
198 156 2 61 54 73 61 86 75 45 46 127 37 58 

 

The findings from the density analyses showed that the number of RWIS stations needed for 

adequate monitoring coverage of mountainous regions with highly varied climates (i.e., 

California, Colorado, and Utah) are relatively higher than regions that are relatively flat and 

experience less varied weather. This makes intuitive sense since highly varied regions in terms of 

weather and topography would typically require more frequent monitoring of road weather and 

surface conditions during inclement weather events to provide timely and cost-efficient winter 

road maintenance operations. A suggested RWIS density for Delaware was found to be the 

lowest for having the smallest area with relatively less-varying weather and topographic 

conditions.  

The values provided are for reference only and further investigation may be warranted to 

determine optimal densities based on different weighting schemes (i.e., traffic versus weather) 

and budgetary constraints since the more RWIS stations there are, the better coverage they will 

provide. 
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5. CONCLUSION AND RECOMMENDATIONS 

Winter road maintenance is one of the most critical activities for transportation agencies, 

especially for cold-region countries. The significant and critical information needed for making 

winter road maintenance decisions is related to road condition and weather data, which are often 

collected, processed, and transmitted by RWIS. Effective and efficient planning of RWIS 

networks is a must and needed for maximizing the monitoring coverage and benefit of RWIS. 

The effectiveness of an RWIS network depends on its density and spatial distribution.  

In this study, the research team investigated the representativeness of RWIS measurements in 

two analysis domains: space and time. Spatial and temporal continuity of the variable of interest, 

RST, was investigated using geostatistical spatiotemporal semivariogram analysis and compared 

to different topographic and weather regions. Lastly, optimal RWIS density for three TPI and 

four WSI zones were estimated from the density optimization output. The key findings of this 

study are as follows: 

 A spatiotemporal analysis concluded strong dependency of spatial and temporal 

autocorrelation ranges of RWIS measurements with TPI and WSI values from their 

associated regions. The zone with the highest topographic variation (TPI-3, mountainous 

region) had a shorter range of spatiotemporal structure, whereas zones with lower TPI values 

(TPI-1, flatland region) had a higher range. Similarly, areas with less severe weather tended 

to have a higher spatial range (e.g., WSI-1), whereas areas with more severe weather had a 

lower range in spatial autocorrelation. 

 The RWIS location allocation framework was extended to account for both spatial and 

temporal attributes of road weather conditions and provided more complete and conclusive 

location solutions. In addition, the framework reestablished in this work provides an 

important basis for strategically locating regional RWIS stations, which are optimal in 

collecting measurements over space and time. 

 A series of RWIS density curves were generated and an optimal RWIS chart was created for 

the first time in literature, providing a decision-support tool to transportation authorities that 

need to plan an RWIS network without having road weather and surface condition data.  

 The desired RWIS density shows a strong dependency on topography and weather 

characteristics of the region under investigation. Higher RWIS density is required for regions 

with high topographic variation and high incidence of severe weather, while lower RWIS 

density is needed for less varied topographic regions with less incidence of severe weather to 

achieve similar levels of monitoring coverage. 

 The solutions developed in this project were integrated into LoRWIS (www.lorwis.com), a 

prototype web-based RWIS location visualization platform for demonstrating the proposed 

models and the resulting solutions. 
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Recommendations for further research on this subject are as follows: 

 The geographic study area included in this project consisted largely flatlands, with few hilly 

and mountainous regions due to data availability issues. Hence, more case studies consisting 

of wider geographic regions should be conducted for a better understanding of the 

relationship between spatial range of autocorrelation in RST and the topographic and weather 

features to develop a more robust quantitative relation between these parameters. 

 The study period of this project was limited to one winter season including six months from 

October 2016 to March 2017. Thus, larger temporal ranges could be considered to improve 

the level of confidence in the outcomes. 

 Universal kriging or kriging with external drift could be applied considering meteorological 

parameters (wind speed and direction, precipitation, humidity, cloud cover, vegetation cover, 

etc.) to better capture the dependency of RST data (or other key parameters, including road 

surface condition index) on local meteorological parameters.  

 Lastly, a sensitivity analysis could be conducted to investigate how the resulting optimal 

densities would change with respect to some of the factors considered in the analysis, 

especially those coefficients used to generate WSI (or even a winter severity index model) 

and TPI classification schemes.
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APPENDIX A. PLOTS OF EXISTING AND OPTIMIZED RWIS LOCATIONS FOR 

THE ALL-NEW STRATEGY 

In the figure, the current location of the existing stations are shown in red, and the optimal new 

locations are shown in blue. 
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APPENDIX B. LOCATIONS OF THE ALL-NEW OPTIMIZED RWIS NETWORK  

Note that in the following tables the new locations for the existing RWIS network were 

generated using dual criteria (considering both weather and traffic data), and the locations are 

given by longitude and latitude. 

Table B.1. Optimized new locations for RWIS stations in California 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -117.28 34.26 9 -120.22 39.67 17 -122.22 40.12 

2 -121.51 37.34 10 -119.57 37.31 18 -121.61 40.05 

3 -122.67 41.25 11 -122.41 41.01 19 -117.87 34.81 

4 -122.02 40.31 12 -118.11 34.31 20 -120.39 36.97 

5 -122.36 39.55 13 -117.64 35 21 -115.96 32.87 

6 -116.25 32.66 14 -119.38 37.21 22 -117.83 34.34 

7 -119.31 37.43 15 -121.71 42.01 23 -119.6 37.75 

8 -119.98 37.63 16 -119.37 37.33 
   

 

Table B.2. Optimized new locations for RWIS stations in Colorado 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -106.44 38.13 50 -103.31 40.52 99 -105.55 39.67 

2 -107.8 37.66 51 -102.96 40.29 100 -105.71 39.04 

3 -105.19 37.79 52 -105.74 40.71 101 -105.08 38.28 

4 -103.12 40.88 53 -106.13 39.72 102 -106.58 39.13 

5 -107.67 37.17 54 -104.31 40.08 103 -105.78 39.81 

6 -102.5 38.44 55 -103.6 40.53 104 -107.84 40.18 

7 -102.66 40.64 56 -103.14 40.61 105 -103.71 38.23 

8 -108.26 40.44 57 -103.48 38.27 106 -104.55 40.62 

9 -104.08 40.35 58 -105.61 39.63 107 -104.37 40.08 

10 -108.31 40.13 59 -104.34 37.24 108 -103.01 40.42 

11 -104.28 37.33 60 -105.89 39.68 109 -103.7 38.59 

12 -102.95 38.8 61 -104.49 40.48 110 -106.03 40.53 

13 -102.97 40.11 62 -106.77 37.5 111 -105.42 38.05 

14 -106.49 40.3 63 -102.96 40.24 112 -105.08 39.04 

15 -103.31 38.09 64 -107.08 38.39 113 -103.66 40.61 

16 -107.62 40.46 65 -102.23 40.77 114 -106.19 39.81 

17 -103.49 40.25 66 -108.69 40.7 115 -108.49 38.95 

18 -106.27 37.64 67 -104.73 39.18 116 -105.02 37.96 

19 -105.14 38.1 68 -102.97 40.02 117 -103.87 38.18 

20 -105.87 37.69 69 -103.18 38.85 118 -105.49 40.13 

21 -102.79 40.15 70 -106.1 38.09 119 -102.75 39.65 
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Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

22 -102.56 38.44 71 -104.61 40.58 120 -108.19 40.08 

23 -103.2 37.86 72 -106.34 38.45 121 -107.79 40.27 

24 -104.84 40.08 73 -108.66 38.04 122 -103.62 39.53 

25 -105.14 38.82 74 -105.58 38.37 123 -106.6 40.07 

26 -106.85 38.54 75 -104.61 40.48 124 -103.2 37.91 

27 -103.7 38.54 76 -103.9 40.3 125 -105.48 37.19 

28 -103.7 38.86 77 -106.18 39.36 126 -102.1 38.47 

29 -105.01 39.4 78 -103.37 40.43 127 -107.69 37.93 

30 -108.67 38.22 79 -103.83 37.78 128 -108.5 38.23 

31 -102.3 40.63 80 -105.43 39.99 129 -102.79 38.48 

32 -103.43 37.77 81 -102.73 38.39 130 -103.01 40.79 

33 -103.69 39.18 82 -107.38 40.51 131 -105.59 37.65 

34 -108.84 38.03 83 -102.76 37.41 132 -105.49 38.68 

35 -105.53 37.11 84 -103.53 38.05 133 -108 38.6 

36 -107.7 39.65 85 -103.7 38.95 134 -108.97 38.35 

37 -106.96 40.29 86 -102.72 40.33 135 -105.85 40.3 

38 -107.3 38.04 87 -103.29 38.85 136 -103.64 38.86 

39 -105.94 39.17 88 -103.72 40.61 137 -107.19 38.48 

40 -108.16 38.06 89 -108.66 40.16 138 -102.12 37.93 

41 -103.6 40.48 90 -104.21 39.09 139 -103.03 40.15 

42 -105.07 38.01 91 -102.25 40.32 140 -103.33 37.28 

43 -105.49 39.9 92 -106.31 37.1 141 -102.82 39.3 

44 -102.87 39.52 93 -105.72 39.76 142 -103.73 40.26 

45 -105.36 38.15 94 -103.21 40.07 143 -105.48 38.46 

46 -103.3 38.4 95 -105.76 38.37 144 -107.45 38.93 

47 -106.94 37.18 96 -104.63 37.69 145 -107.97 39 

48 -105.3 37.52 97 -106.78 40.07 146 -105.38 40.17 

49 -104.84 40.58 98 -108.94 37.85 147 -103.7 38.81 

 

Table B.3. Optimized new locations for RWIS stations in Delaware 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -75.65 39.15 8 -75.24 38.82 15 -75.64 38.51 

2 -75.59 39.06 9 -75.3 38.53 16 -75.36 38.78 

3 -75.42 38.47 10 -75.19 38.52 17 -75.61 39.46 

4 -75.71 39.37 11 -75.48 38.88 18 -75.71 38.97 

5 -75.65 38.83 12 -75.3 38.65 19 -75.37 38.92 

6 -75.47 38.61 13 -75.65 39.24 
   

7 -75.53 39.33 14 -75.51 38.99 
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Table B.4. Optimized new locations for RWIS stations in Iowa 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -91.02 42.19 30 -94.96 42.42 59 -93.74 41.08 

2 -93.58 41.29 31 -93.82 40.89 60 -95.49 41.69 

3 -90.84 41.96 32 -93.27 41.76 61 -95.32 42.32 

4 -94.58 41.52 33 -93.62 42.88 62 -95.65 42.99 

5 -92.72 41.85 34 -91.35 43.19 63 -93.32 42.34 

6 -95.54 41.61 35 -93.79 42.3 64 -93.62 42.97 

7 -94.16 41.89 36 -93.33 41.47 65 -95.96 41.77 

8 -92.17 41.76 37 -95.08 42.42 66 -95.61 40.87 

9 -92.35 41.57 38 -91.54 42.88 67 -95.86 41 

10 -94.47 42.2 39 -96.19 43.47 68 -95.48 41.78 

11 -90.6 42.01 40 -92.25 41.84 69 -95.87 41.9 

12 -93.8 42.39 41 -90.61 42.11 70 -92.01 43.47 

13 -94.45 41.78 42 -95.91 42.08 71 -94.53 42.52 

14 -92.53 41.58 43 -91.87 42.29 72 -91.02 42.06 

15 -92.95 41.31 44 -95.74 42.23 73 -91.78 42.76 

16 -95 41.65 45 -95.34 41.42 74 -93.19 41.14 

17 -94.67 40.76 46 -94.72 40.71 75 -92.03 42.97 

18 -92.65 40.63 47 -95.44 40.87 76 -90.72 41.65 

19 -93.85 41.35 48 -92.24 41.94 77 -94.24 40.75 

20 -94.72 42.83 49 -94.54 42.77 78 -94.58 41.85 

21 -91.8 41.75 50 -95.74 41.95 79 -92.01 40.67 

22 -95.46 42.94 51 -95.4 41.24 80 -94.98 41.25 

23 -92.23 41.44 52 -95.55 42.05 81 -91.14 42.01 

24 -94.98 41.34 53 -94.73 40.98 82 -93.79 40.68 

25 -91.77 40.62 54 -94.83 42.42 83 -95.68 43.44 

26 -92.26 42.83 55 -91.48 42.87 84 -94.02 40.72 

27 -91.9 42.01 56 -94.79 41.25 85 -92.34 42.2 

28 -96.5 42.81 57 -92.58 42.84 86 -91.29 42.88 

29 -90.91 41.74 58 -93.6 40.77 
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Table B.5. Optimized new locations for RWIS stations in Illinois 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -89.91 41.45 21 -90.65 41.07 41 -88.19 38.26 

2 -90.87 40.95 22 -88.54 37.64 42 -88.18 37.56 

3 -90.73 39.99 23 -89.32 41.23 43 -90.09 39.64 

4 -88.37 38.67 24 -88.87 41.75 44 -88.27 38.37 

5 -88.87 39.34 25 -88.84 37.51 45 -88.18 40.41 

6 -89.88 39.07 26 -88.51 40.57 46 -89.4 38.77 

7 -89.98 42.02 27 -88.03 39.16 47 -90.18 41.2 

8 -89.74 39.63 28 -89.26 41.49 48 -89.27 37.14 

9 -89.73 41.56 29 -89.34 41.02 49 -88.2 41 

10 -88.45 38.08 30 -90.63 40.23 50 -87.52 38.73 

11 -87.93 41.06 31 -88.58 40.48 51 -88.18 37.96 

12 -88.49 37.4 32 -90.42 39.32 52 -88.73 37.46 

13 -87.83 39.63 33 -89.13 41.68 53 -88.42 41.47 

14 -90.12 40.22 34 -88.26 40.75 54 -90.76 39.32 

15 -89.48 38.14 35 -89.17 38.94 55 -88.82 40.51 

16 -88.75 37.29 36 -90.07 41.55 56 -90.63 39.36 

17 -88.75 39.67 37 -87.99 39.3 57 -90.82 40.77 

18 -89.13 41.44 38 -90.37 40.57 58 -89.68 40.93 

19 -89.32 37.63 39 -90.64 39.46 59 -88.94 38.95 

20 -87.7 40.51 40 -88.07 40.6 
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Table B.6. Optimized new locations for RWIS stations in Kansas 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

#r Long. Lat. 

1 -100.87 37.51 20 -101.27 38.13 39 -101.18 39.03 

2 -98.03 38.52 21 -98.02 39.67 40 -101.09 39.8 

3 -101.06 39.13 22 -98.33 39.99 41 -95.87 38.09 

4 -97.71 37.16 23 -95.72 38.54 42 -96.8 38.74 

5 -97.85 39.69 24 -96.9 38.89 43 -96.47 37.25 

6 -98.18 37.96 25 -101.36 37.15 44 -95.59 38.58 

7 -95.91 37.78 26 -95.57 37.39 45 -101.37 39.36 

8 -96.35 37.36 27 -101.27 38.27 46 -96.05 38.78 

9 -99.77 37.4 28 -101.55 39.74 47 -98.58 37.5 

10 -101.72 39.61 29 -98.69 37.27 48 -98.56 39.8 

11 -101.75 38.75 30 -101.69 37.26 49 -96.22 37.19 

12 -98.57 38.16 31 -96.69 38.96 50 -97.86 39.89 

13 -101.76 37.49 32 -101.85 39.83 51 -95.14 39.43 

14 -97.21 39.81 33 -101.75 38.94 52 -95.85 37.4 

15 -101.72 39.11 34 -96.98 39.63 53 -94.82 37.96 

16 -99.72 38.81 35 -101.1 37.49 54 -97.35 38.68 

17 -101.24 38.9 36 -97.12 38.83 55 -96.65 37.05 

18 -96.33 39.7 37 -100.84 37.28 56 -97.98 39.19 

19 -101.77 38.12 38 -98.43 37.47 
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Table B.7. Optimized new locations for RWIS stations in Michigan 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -86.18 44.7 34 -89.56 46.43 67 -87.17 46.06 

2 -83.14 43.99 35 -84.17 43.92 68 -85.23 41.94 

3 -84.57 44.66 36 -85.42 46.52 69 -85.74 45.04 

4 -85.93 41.92 37 -85.63 44.95 70 -84.62 44.18 

5 -84.51 42.34 38 -84.19 45.98 71 -84.21 45.23 

6 -85.71 44.22 39 -84.65 45.86 72 -84.23 41.82 

7 -84.95 43.18 40 -82.77 43.99 73 -85.14 42.49 

8 -84.23 42.84 41 -83.77 44.46 74 -84.81 42.1 

9 -84.03 43 42 -82.93 43.46 75 -85.18 46.61 

10 -85.9 44.66 43 -83.56 44.66 76 -82.8 43.81 

11 -82.91 44.04 44 -85.19 44.34 77 -87.1 46.35 

12 -83.34 43.87 45 -85.08 42.94 78 -83.93 44.72 

13 -85.17 44.34 46 -83.37 43.34 79 -84.75 41.7 

14 -87.31 46.26 47 -83.83 44.78 80 -83.97 45.97 

15 -83.68 43.23 48 -85.15 43.68 81 -85.02 46.23 

16 -85.02 42.44 49 -84.83 45.99 82 -85.06 45.46 

17 -85.49 44.98 50 -82.94 43.6 83 -83.77 44.92 

18 -82.68 43.89 51 -86.72 46.36 84 -83.76 44.69 

19 -85.08 43.31 52 -83.32 43.56 85 -84.17 45.07 

20 -85.18 44.49 53 -86.1 42.1 86 -85.26 42.59 

21 -85.92 44.81 54 -82.56 42.58 87 -84.7 42.37 

22 -83.74 44.65 55 -84.71 45.44 88 -85.82 43.67 

23 -84.46 45.51 56 -84.96 44.03 89 -83.55 43.57 

24 -84.42 44.54 57 -84.75 41.85 90 -85.32 42.38 

25 -85.27 43.38 58 -85.06 44.34 91 -85.93 44.93 

26 -84.88 42.57 59 -85.8 44.95 92 -84.09 42.64 

27 -89.56 46.72 60 -83.7 45.15 93 -85.06 46.64 

28 -84.41 41.86 61 -85.82 44.12 94 -84.34 42.66 

29 -82.62 43.74 62 -86.62 45.73 95 -84.04 42.22 

30 -83.03 43.41 63 -85.86 42.42 96 -84.03 42.2 

31 -85.1 45.09 64 -83.75 44.59 97 -84.07 42.37 

32 -85.85 43.78 65 -85.1 46.49 98 -87.24 46.18 

33 -84.24 46.08 66 -84.23 45.41    
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Table B.8. Optimized new locations for RWIS stations in Minnesota 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -95.83 48.12 30 -95.47 46.37 59 -94.09 45.86 

2 -92.93 47.03 31 -96.53 46.39 60 -96.17 45.00 

3 -92.50 44.29 32 -95.38 44.22 61 -92.88 46.71 

4 -94.00 44.37 33 -92.86 47.84 62 -96.38 45.27 

5 -95.86 45.28 34 -93.48 47.84 63 -95.47 44.98 

6 -95.31 44.04 35 -93.17 47.22 64 -94.99 43.77 

7 -95.92 45.10 36 -96.22 43.57 65 -95.77 45.83 

8 -95.40 46.15 37 -94.70 46.57 66 -95.84 45.87 

9 -93.88 44.10 38 -96.00 45.28 67 -95.56 45.43 

10 -92.68 46.27 39 -94.19 44.41 68 -93.19 47.75 

11 -96.43 46.04 40 -95.91 44.88 69 -96.93 47.82 

12 -92.38 44.28 41 -93.12 43.87 70 -94.76 44.05 

13 -95.98 43.57 42 -97.11 48.31 71 -95.67 46.55 

14 -95.91 44.79 43 -95.33 46.33 72 -95.77 44.79 

15 -95.75 44.07 44 -93.12 47.85 73 -95.13 44.36 

16 -93.74 43.97 45 -96.28 44.64 74 -94.56 48.60 

17 -93.27 47.81 46 -96.27 47.79 75 -96.43 45.01 

18 -91.69 43.78 47 -94.10 46.04 76 -95.20 45.71 

19 -95.12 44.04 48 -96.49 45.90 77 -95.31 47.14 

20 -96.42 48.15 49 -95.44 44.40 78 -93.45 46.22 

21 -93.27 46.45 50 -93.20 47.43 79 -96.71 46.47 

22 -93.76 43.89 51 -94.62 43.65 80 -95.72 46.11 

23 -95.00 47.78 52 -93.75 48.51 81 -94.55 48.28 

24 -95.72 45.11 53 -92.41 46.49 82 -93.13 46.45 

25 -96.44 47.30 54 -96.30 45.01 83 -95.94 44.16 

26 -96.09 45.82 55 -93.20 48.06 84 -95.53 46.43 

27 -94.70 48.77 56 -92.00 44.11 85 -96.78 45.66 

28 -91.83 43.79 57 -93.67 47.84 86 -94.68 44.05 

29 -94.09 45.77 58 -93.57 44.38       
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Table B.9. Optimized new locations for RWIS stations in North Dakota 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -99.56 46.51 11 -100.88 47 21 -103.14 46.17 

2 -99.56 48.86 12 -98.43 47.1 22 -103.53 48.58 

3 -98.76 48.41 13 -103.39 48.58 23 -103.37 46.42 

4 -100.94 47.15 14 -99.66 48.99 24 -103.95 48.89 

5 -103.15 48.05 15 -102.35 47.15 25 -103.65 47.76 

6 -99.2 47.15 16 -102.78 47.1 26 -101.06 47.82 

7 -103.14 46.26 17 -99.18 46.53 27 -97.82 46.63 

8 -99.74 48.07 18 -102.79 46.81 28 -98.73 47.23 

9 -101.33 46.23 19 -101.33 46.07 29 -98.65 47.68 

10 -103.22 48.18 20 -103.16 46.52    
 

Table B.10. Optimized new locations for RWIS stations in Ohio 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -84.06 40.19 62 -84.26 40.49 123 -82.61 40.4 

2 -84.43 41.44 63 -83.87 41.09 124 -84.35 40.05 

3 -81.37 40.24 64 -81.12 40.35 125 -82.07 40.23 

4 -83.9 40.29 65 -81.36 39.74 126 -84.22 41.31 

5 -80.82 40.41 66 -81.13 41.31 127 -80.78 41.68 

6 -83.99 41.1 67 -84.37 40.27 128 -83.72 40.25 

7 -82.26 40.95 68 -83.2 38.95 129 -84.72 41.3 

8 -81.84 40.23 69 -83.98 39.43 130 -84.78 39.37 

9 -84.6 41.3 70 -82.75 40.89 131 -81.48 40.24 

10 -84.48 40.04 71 -83.26 38.63 132 -83.09 40.98 

11 -82.86 41.39 72 -83.33 39.39 133 -83.25 40.52 

12 -81.89 39.37 73 -82.06 40.09 134 -81.66 40.05 

13 -82.85 40.9 74 -83.19 38.86 135 -84 38.84 

14 -83.27 41.29 75 -82.9 41.08 136 -81.25 39.65 

15 -81.3 39.92 76 -82.19 40.29 137 -83.38 39.13 

16 -83.8 39.34 77 -80.71 40.69 138 -82.08 40.99 

17 -83.58 40.02 78 -81.61 40.68 139 -82.8 38.96 

18 -81.82 39.11 79 -80.78 40.64 140 -82.13 40.68 

19 -82.29 39.69 80 -84.66 40.66 141 -82.38 40.59 

20 -83.32 39.08 81 -80.54 41.31 142 -82 39.46 

21 -82.01 40.77 82 -82.63 39.18 143 -81.25 40.23 

22 -83.54 38.71 83 -81.31 39.82 144 -83.72 38.8 

23 -82.83 39.68 84 -81.05 40.19 145 -80.67 41.76 

24 -82.87 39.13 85 -83.7 41.29 146 -84.23 41.09 

25 -83.44 39.31 86 -83.19 40.39 147 -81.71 39.73 

26 -82.47 39.36 87 -83.8 39.25 148 -81.65 39.47 
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Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

27 -84.43 40.41 88 -83.16 41.2 149 -83.15 39.09 

28 -81.13 39.83 89 -83.38 38.82 150 -82.58 39.55 

29 -83.53 40.16 90 -82.18 39.54 151 -82.98 41.26 

30 -81.97 40.36 91 -83.85 40.78 152 -82.17 39.15 

31 -83.68 39.3 92 -81.01 39.7 153 -83.16 39.53 

32 -81.58 40.39 93 -82.47 39.5 154 -82.61 40.27 

33 -83.04 41.21 94 -82.34 39.1 155 -81.72 40.37 

34 -84.11 40.01 95 -83.51 41.02 156 -82.51 38.56 

35 -80.95 40.15 96 -83.55 40.34 157 -82.14 40.86 

36 -83.35 41.6 97 -83.82 39.79 158 -81.08 41.26 

37 -82.02 40.68 98 -83.68 39.08 159 -80.78 41.46 

38 -84.13 38.89 99 -81.78 39.91 160 -81.73 40.18 

39 -83.66 40.38 100 -81.59 39.87 161 -84.39 40.74 

40 -83.03 39.13 101 -82.38 40.72 162 -80.96 40.41 

41 -83.59 39.84 102 -84.71 41.38 163 -82.14 40.45 

42 -81.84 40.37 103 -82 39.38 164 -80.66 41.27 

43 -81.71 39.82 104 -83.73 40.47 165 -80.95 40.59 

44 -84.56 39.59 105 -81.94 39.74 166 -84.43 40.63 

45 -83.9 40.55 106 -80.95 41.63 167 -81.25 40.54 

46 -82.31 40.67 107 -83.68 39.39 168 -80.88 40.68 

47 -80.64 41.54 108 -84.26 40.63 169 -83.73 39.21 

48 -82 39.59 109 -84.03 40.6 170 -82.12 39.69 

49 -84.73 39.74 110 -81.07 40.46 171 -83.9 40.42 

50 -82.45 41.31 111 -84.12 40.1 172 -83.32 40.8 

51 -84.29 40.95 112 -80.83 40.77 173 -80.78 41.58 

52 -84.43 40.5 113 -84.72 40.22 174 -83.75 41.06 

53 -82.02 40.54 114 -83.38 39.04 175 -82.28 39.05 

54 -84.72 40.31 115 -81.77 40.09 176 -84.6 40.18 

55 -83.38 38.95 116 -81.24 40.65 177 -81.78 40.73 

56 -81.89 39.91 117 -81.66 40.31 178 -84.61 41.53 

57 -82.25 39.91 118 -84.56 41.67 179 -80.96 41.53 

58 -82.35 39.41 119 -81.78 39.69 180 -83.28 41.02 

59 -84.76 41.02 120 -84.12 41.32 181 -82.66 41.16 

60 -81.88 39.46 121 -80.78 40 182 -80.6 40.91 

61 -82.34 38.79 122 -82.37 40.36 
   

 



60 

Table B.11. Optimized new locations for RWIS stations in Pennsylvania 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -70.6 40.43 8 -72.85 40.68 15 -71.67 41.11 

2 -72.46 40.2 9 -71.95 40.13 16 -73.14 41.24 

3 -71.22 41.48 10 -71.6 41.36 17 -71.95 40.24 

4 -71.69 40.22 11 -73.44 39.94 18 -71.71 41.39 

5 -72.42 40.28 12 -73.3 39.94 19 -70.09 41.89 

6 -72.22 41.02 13 -71.25 41.12 
   

7 -70.36 39.75 14 -71.99 41.24 
   

 

Table B.12. Optimized new locations for RWIS stations in Utah 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -112.46 38.28 34 -111.92 38.42 67 -113.3 38.44 

2 -110.88 40.77 35 -112.74 40.3 68 -111.29 41.5 

3 -112.75 40.47 36 -110.09 37.62 69 -111.7 38.56 

4 -111.77 41.62 37 -111.65 40.45 70 -111.53 38.52 

5 -110.85 40.84 38 -112.32 39.45 71 -111.41 41.49 

6 -111.97 38.29 39 -110.45 40.19 72 -112.28 40.02 

7 -111.21 41.51 40 -110.31 37.8 73 -110.59 40.3 

8 -109.93 37.18 41 -109.7 40.89 74 -109.91 37.59 

9 -110.72 40.26 42 -109.97 37.61 75 -110.91 39.49 

10 -109.95 37.41 43 -112.75 40.4 76 -112.46 39.29 

11 -110.5 40.18 44 -112.37 38.29 77 -112.28 39.52 

12 -112.72 37.23 45 -114.05 38.95 78 -112.66 40.71 

13 -110.21 37.67 46 -109.92 37.24 79 -112.69 37.66 

14 -112.29 41.67 47 -114.03 39.03 80 -110.14 37.66 

15 -112.53 38.25 48 -111.93 41.91 81 -111.02 40.48 

16 -112.72 40.59 49 -112.69 40.64 82 -110.26 37.73 

17 -110.85 40.98 50 -109.91 37.45 83 -114.01 38.89 

18 -112.38 38.24 51 -112.24 38.26 84 -113 39.19 

19 -113.09 38.42 52 -113.96 38.78 85 -110.4 39.48 

20 -110.21 37.43 53 -112.31 38.14 86 -110.69 40.19 

21 -112.32 40.06 54 -113.99 38.83 87 -111.07 39.21 

22 -111.06 40.52 55 -111.6 41.6 88 -111.44 40.57 

23 -111.1 39.29 56 -112.69 38.08 89 -109.88 37.15 

24 -111.43 38.64 57 -109.93 37.3 90 -111.24 39.65 

25 -112.39 40.08 58 -112.74 40.54 91 -113.16 41.83 

26 -110.92 40.47 59 -109.9 37.52 92 -112.28 39.67 

27 -111 39.48 60 -112.01 38.2 93 -110.04 37.59 

28 -111.77 38.51 61 -110.85 40.46 94 -111.67 40.96 

29 -112.77 37.27 62 -110.34 37.86 95 -111.46 38.6 
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Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

30 -113.12 41.97 63 -111.4 38.7 96 -109.35 37.34 

31 -112.8 39.3 64 -113.83 38.6 97 -111.59 40.85 

32 -111.17 39.54 65 -112.38 38.98 98 -111.9 40.94 

33 -111.57 38.48 66 -113.9 38.69 
   

 

Table B.13. Optimized new locations for RWIS stations in Virginia 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -77.85 37.06 19 -79.3 37.96 37 -80.26 37.57 

2 -78.73 37.64 20 -79.16 37.83 38 -79.87 38.12 

3 -79.71 38.31 21 -78.7 36.85 39 -81.16 37.26 

4 -76.92 38.19 22 -80.12 37.51 40 -78.6 38.68 

5 -78.04 39.18 23 -77.66 38.63 41 -78.27 38.3 

6 -77.66 36.76 24 -77.28 36.78 42 -80.12 36.79 

7 -75.83 37.52 25 -79.54 37.5 43 -80.32 37.39 

8 -81.6 37.08 26 -76.89 37.69 44 -81.96 36.89 

9 -77.17 37.85 27 -79.33 37.67 45 -81.3 37.04 

10 -79.95 38.02 28 -80.56 36.66 46 -78.71 36.72 

11 -82.54 37.11 29 -77.14 36.87 47 -78.73 37.07 

12 -80.21 36.86 30 -77.04 37.79 48 -79.24 36.72 

13 -79.79 38.21 31 -79.24 36.82 49 -78.27 38.45 

14 -81.45 36.96 32 -79.03 37.89 50 -80.95 37.27 

15 -79.41 37.56 33 -78.21 36.55 51 -80.07 37.18 

16 -77.01 37.13 34 -80.16 37.64 52 -79.65 38.45 

17 -78.32 37 35 -79.71 37.45 
   

18 -78.88 38.01 36 -81.5 36.62 
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Table B.14. Optimized new locations for RWIS stations in Wisconsin 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

Station 

# Long. Lat. 

1 -90.22 43.28 21 -88.78 44.8 41 -90.43 43.54 

2 -88.93 46.03 22 -90.4 46.36 42 -91.16 44.1 

3 -88.34 43.89 23 -89.09 45.21 43 -92.34 45.64 

4 -90.09 46.03 24 -88.75 44.94 44 -92.18 45.63 

5 -89.38 43 25 -89.35 43.57 45 -90.87 43.12 

6 -88.66 43.36 26 -91.98 46.18 46 -89.9 42.59 

7 -91.93 44.79 27 -90.64 43.51 47 -88.83 45.91 

8 -88.77 45.38 28 -91.11 43.56 48 -90.33 43.18 

9 -89.93 45.15 29 -90.25 44.35 49 -88.18 43.69 

10 -88.52 45.92 30 -90.08 43.02 50 -89.19 42.83 

11 -89.9 46.3 31 -92.69 45.55 51 -88.76 45.15 

12 -89.12 45.09 32 -91.49 44.43 52 -88.63 45.02 

13 -88.82 45.78 33 -89.44 43.79 53 -88.93 45.05 

14 -91.22 45.74 34 -89.82 42.92 54 -90.41 46.46 

15 -91.75 44.22 35 -90.04 42.87 55 -91.22 45.61 

16 -91.8 44.7 36 -90.86 43.26 56 -89.5 43.25 

17 -90.59 44.72 37 -89.43 45.9 57 -89.26 44.5 

18 -92.56 45.46 38 -91.04 43.15 58 -90.85 46.56 

19 -89.11 43.5 39 -90.59 46.38 59 -89.87 43.04 

20 -88.92 44.46 40 -88.91 45.26 
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APPENDIX C. PLOTS OF EXISTING AND EXPANDED RWIS LOCATIONS FOR THE 

EXPANSION STRATEGY 

In the figure, the existing stations are shown in red, the first addition of 10 new stations are 

shown in green, and the second additional 10 (for a total of 20) new stations are shown in blue. 

State 
Criteria 1 

(Weather only) 

Criteria 2 

(Dual criteria) 

CA 

  

CO 

  

DE 

 
 



64 

IA 

  

IL 

 

 

KS 
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MI 

  

MN 

  

ND 

  

OH 
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PA 

 
 

UT 

 
 

VA 

  

WI 
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APPENDIX D. LOCATION PLAN FOR ADDING NEW STATIONS TO EXISTING 

RWIS NETWORK 

Note that in the following tables include the proposed addition of 20 new RWIS stations (which 

may be added 10 at a time as explained in Chapter 4) considering weather data only and dual 

criteria (considering both weather and traffic data). 

Table D.1. Potential additional locations for RWIS stations in California 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -120.04 35.35 -119.81 37.75 

2 -122.43 40.23 -117.23 34.34 

3 -121.98 37.32 -119.86 37.26 

4 -117.35 34.01 -122.86 39.73 

5 -116.99 32.68 -118.2 36.03 

6 -121.4 39.82 -121.58 40.33 

7 -117.39 36.34 -121.59 37.36 

8 -120.56 37.33 -122.69 41.27 

9 -117.65 33.98 -122.93 39.79 

10 -121.47 36.52 -120.27 36.95 

11 -121.95 38.42 -121.67 38.23 

12 -118.29 33.82 -115.44 33.84 

13 -116.40 33.65 -119.67 37.85 

14 -121.23 36.63 -122.81 39.68 

15 -121.73 39.66 -119.38 37.34 

16 -119.41 34.34 -122.42 39.8 

17 -118.00 34.70 -119.45 37.15 

18 -117.63 34.14 -119.64 37.53 

19 -116.51 33.12 -118.78 36.54 

20 -122.50 37.70 -119.49 37.81 
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Table D.2. Potential additional locations for RWIS stations in Colorado 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -104.73 40.58 -107.55 38.56 

2 -104.50 40.12 -108.48 38.95 

3 -107.30 38.08 -103.78 40.61 

4 -108.76 37.59 -106.32 37.1 

5 -108.53 37.46 -105.61 40.39 

6 -104.73 38.23 -103.18 38.45 

7 -107.89 38.47 -104.26 40.08 

8 -104.79 39.59 -102.23 40.91 

9 -105.48 38.14 -103.89 37.05 

10 -105.72 39.76 -103.83 37.78 

11 -106.83 39.66 -102.87 39.25 

12 -102.07 40.59 -104.62 37.69 

13 -105.90 40.17 -105.6 39.04 

14 -107.69 37.75 -106.04 37.28 

15 -105.49 39.41 -106.2 40.66 

16 -102.30 40.55 -105.43 38.55 

17 -105.14 37.56 -105.53 37.15 

18 -103.72 40.61 -104.55 40.62 

19 -102.30 40.68 -102.13 40.58 

20 -105.60 39.67 -108.95 37.9 
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Table D.3. Potential additional locations for RWIS stations in Delaware 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -75.65 39.24 -75.3 38.65 

2 -75.54 39.20 -75.65 39.24 

3 -75.65 39.15 -75.47 38.7 

4 -75.30 38.61 -75.65 39.15 

5 -75.36 38.70 -75.36 38.52 

6 -75.59 38.74 -75.65 38.79 

7 -75.60 39.64 -75.77 39.42 

8 -75.66 38.83 -75.71 38.97 

9 -75.36 38.52 -75.19 38.52 

10 -75.59 38.61 -75.6 39.06 

11 -75.47 38.61 -75.59 38.61 

12 -75.47 38.48 -75.37 38.92 

13 -75.77 39.41 -75.19 38.65 

14 -75.59 39.10 -75.47 38.88 

15 -75.42 38.92 -75.36 38.7 

16 -75.65 38.52 -75.47 38.61 

17 -75.19 38.74 -75.71 38.83 

18 -75.72 39.51 -75.54 39.34 

19 -75.66 39.73 -75.76 39.2 

20 -75.18 38.52 -75.65 38.52 
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Table D.4. Potential additional locations for RWIS stations in Iowa 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -92.53 41.75 -95.68 42.27 

2 -94.98 41.38 -92.06 40.85 

3 -95.70 41.23 -90.85 41.69 

4 -91.19 42.24 -91.13 42.42 

5 -94.23 42.74 -95.38 40.88 

6 -91.09 41.43 -92.16 42.61 

7 -91.92 42.47 -95.53 41.64 

8 -93.80 42.30 -94.01 40.72 

9 -93.43 41.67 -92.03 43.06 

10 -92.83 41.04 -93.37 41.89 

11 -95.47 41.50 -91.01 42.15 

12 -95.06 41.52 -95.85 42.13 

13 -91.01 42.29 -95.04 41.38 

14 -92.03 43.06 -91.76 41.17 

15 -95.83 42.98 -93.25 41.76 

16 -91.63 41.48 -92.16 41.76 

17 -96.14 42.85 -91.54 42.88 

18 -93.39 43.15 -91.28 43.36 

19 -95.37 42.01 -95.94 41.68 

20 -91.92 41.80 -94.31 40.71 
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Table D.5. Potential additional locations for RWIS stations in Illinois 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -90.67 40.69 -89.11 37.15 

2 -91.13 39.92 -89.18 40.05 

3 -88.68 37.43 -88.46 40.57 

4 -89.72 38.31 -88.21 40.8 

5 -88.45 40.11 -88.21 40.93 

6 -88.29 37.46 -90.62 39.33 

7 -88.62 41.51 -88.27 37.48 

8 -89.05 41.51 -90.4 40.79 

9 -90.11 42.03 -90.54 40.73 

10 -89.47 37.56 -90.01 41 

11 -88.34 39.05 -89.33 37.62 

12 -87.69 41.61 -90.06 41.56 

13 -90.98 40.67 -88.59 40.48 

14 -87.73 41.04 -88.82 40.51 

15 -89.88 38.53 -89.24 38.39 

16 -87.93 38.39 -88.48 37.63 

17 -89.23 38.32 -90.71 40.23 

18 -89.11 38.62 -89.87 40.93 

19 -89.61 40.81 -90.87 40.97 

20 -90.18 38.59 -89.71 41.56 
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Table D.6. Potential additional locations for RWIS stations in Kansas 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -96.90 38.81 -99.76 37.44 

2 -96.87 39.84 -96.33 39.7 

3 -95.68 37.69 -97.36 38.68 

4 -95.21 39.22 -97.93 39.68 

5 -94.95 38.62 -101.18 38.99 

6 -95.13 39.57 -96.97 39.63 

7 -100.12 38.64 -101.72 39.61 

8 -97.64 39.00 -101.27 38.13 

9 -98.74 38.15 -98.47 37.47 

10 -94.95 37.72 -101.76 37.49 

11 -100.49 39.58 -97.58 39.11 

12 -95.36 38.55 -94.83 37.6 

13 -95.69 38.64 -101.23 38.9 

14 -98.86 38.87 -101.3 39.03 

15 -95.76 37.20 -101.69 37.26 

16 -96.96 38.67 -100.7 38.05 

17 -96.26 38.88 -101.27 38.27 

18 -101.76 39.33 -101.85 39.83 

19 -97.33 37.51 -95.31 39.68 

20 -100.83 39.44 -95.27 39.81 
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Table D.7. Potential additional locations for RWIS stations in Michigan 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -84.93 43.41 -87.49 45.88 

2 -86.25 43.24 -85.09 43.31 

3 -83.75 42.50 -85 42.57 

4 -85.72 43.61 -87.22 46.16 

5 -85.65 43.02 -88.06 47.47 

6 -84.60 43.39 -89.57 46.71 

7 -85.23 42.36 -85.85 43.79 

8 -84.73 45.45 -83.77 43.48 

9 -85.41 41.98 -83.84 45.99 

10 -83.36 42.04 -84.16 45.08 

11 -84.22 42.29 -86.77 46.34 

12 -84.11 44.38 -83.68 43.23 

13 -85.34 43.43 -84.04 42.22 

14 -83.33 43.34 -84.24 42.84 

15 -83.75 42.35 -85.8 43.62 

16 -84.50 46.27 -85.32 42.38 

17 -84.36 45.36 -86.05 42.3 

18 -83.87 43.59 -84.21 45.22 

19 -84.26 43.66 -84.61 44.13 

20 -85.53 43.68 -86.22 44.69 
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Table D.8. Potential additional locations for RWIS stations in Minnesota 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -91.75 46.98 -92.53 47.51 

2 -93.65 44.67 -93.46 44.94 

3 -94.76 47.60 -93.29 44.8 

4 -94.84 46.33 -93.45 45.1 

5 -95.17 43.81 -93.06 45.04 

6 -94.30 44.85 -93.09 44.97 

7 -96.49 46.50 -93.07 44.88 

8 -92.90 44.07 -92.89 47.45 

9 -95.65 45.31 -93.28 43.92 

10 -95.28 45.50 -96.76 46.84 

11 -95.88 46.77 -95.74 45.11 

12 -94.61 43.64 -96.18 45.23 

13 -95.53 44.80 -95.00 45.89 

14 -93.91 46.48 -95.94 44.12 

15 -96.46 48.60 -91.82 43.79 

16 -93.90 45.59 -95.51 45.7 

17 -94.22 45.50 -95.97 44.79 

18 -95.03 45.12 -95.47 46.33 

19 -94.74 43.69 -96.42 46.13 

20 -93.45 45.00 -95.48 45.03 
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Table D.9. Potential additional locations for RWIS stations in North Dakota 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -98.34 48.03 -99.22 47.15 

2 -98.69 46.63 -103.89 48.03 

3 -99.74 47.44 -97.94 46.11 

4 -100.96 48.06 -104 47.16 

5 -100.01 47.44 -103.59 48.58 

6 -99.63 48.52 -103.16 46.52 

7 -97.20 48.15 -97.84 46.63 

8 -100.25 46.27 -103.46 48.58 

9 -97.13 46.26 -99.62 48.69 

10 -98.94 48.79 -98.7 47.23 

11 -102.28 46.86 -99.33 46.53 

12 -100.88 47.84 -103.62 48.8 

13 -100.72 46.71 -99.35 46.38 

14 -100.50 46.31 -100.91 47.61 

15 -103.62 48.57 -103.65 46.23 

16 -98.87 48.16 -101.54 47.86 

17 -99.41 47.49 -102.87 46.13 

18 -99.94 47.76 -103.14 48.05 

19 -98.35 47.80 -99.62 48.47 

20 -101.72 48.46 -103.87 48.61 
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Table D.10. Potential additional locations for RWIS stations in Ohio 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -84.12 40.06 -83.58 41.28 

2 -82.79 40.80 -82.02 40.54 

3 -84.61 41.57 -83.72 38.81 

4 -83.07 40.35 -80.77 41.58 

5 -82.06 39.96 -82.35 39.41 

6 -83.45 39.22 -81.36 39.74 

7 -82.84 40.67 -84.72 41.52 

8 -81.85 41.13 -83.72 40.25 

9 -82.02 40.68 -81.19 41.49 

10 -84.10 40.82 -80.96 41.41 

11 -81.61 40.86 -83.56 40.79 

12 -81.37 40.73 -81.01 40.01 

13 -82.14 40.68 -84.43 40.41 

14 -83.07 40.26 -81.65 39.73 

15 -81.90 40.77 -82.92 41.12 

16 -82.65 39.95 -83.92 40.96 

17 -83.91 40.42 -81.77 39.69 

18 -83.65 40.11 -80.95 41.63 

19 -82.67 40.85 -81.42 39.82 

20 -80.59 41.04 -81.95 39.6 
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Table D.11. Potential additional locations for RWIS stations in Pennsylvania 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -79.13 40.06 -73.14 41.24 

2 -77.28 40.13 -73.63 39.72 

3 -79.60 41.60 -72.7 40.8 

4 -80.22 39.90 -71.89 41.33 

5 -77.50 41.03 -70.09 39.86 

6 -76.46 40.52 -71.61 41.11 

7 -75.54 40.05 -71.49 40.15 

8 -75.51 40.41 -72.46 41.71 

9 -77.89 40.10 -72.01 40.35 

10 -77.33 39.76 -72.4 40.21 

11 -76.80 40.16 -72.67 40.3 

12 -80.38 40.98 -73.22 41.59 

13 -77.60 39.73 -72.17 40.96 

14 -75.82 40.78 -71.68 41.43 

15 -78.35 40.51 -71.79 39.86 

16 -75.49 40.15 -71.28 40.25 

17 -74.92 40.25 -72.98 41.34 

18 -79.07 41.33 -71.17 41.44 

19 -79.51 40.33 -71.08 39.91 

20 -77.88 42.00 -72.54 40.86 
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Table D.12. Potential additional locations for RWIS stations in Utah 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -111.89 41.25 -109.92 37.18 

2 -113.86 41.42 -110.89 40.76 

3 -112.31 40.35 -109.94 37.6 

4 -112.59 37.75 -111.51 38.54 

5 -113.18 40.73 -114.03 39.02 

6 -112.50 37.51 -112.45 39.28 

7 -112.37 39.52 -112.73 40.56 

8 -109.12 37.18 -112.69 38.08 

9 -111.09 41.78 -112.36 38.24 

10 -111.88 39.50 -112.72 37.66 

11 -109.32 40.17 -109.91 37.24 

12 -111.25 39.65 -112.31 38.14 

13 -112.74 40.51 -114.03 38.96 

14 -111.76 41.25 -110.86 40.83 

15 -112.06 41.12 -111.23 41.51 

16 -111.53 39.95 -111.67 40.96 

17 -111.67 39.23 -110.71 37.64 

18 -112.03 40.70 -109.9 37.48 

19 -110.83 39.61 -109.87 37.15 

20 -111.48 40.44 -109.89 37.54 

 



79 

Table D.13. Potential additional locations for RWIS stations in Virginia 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -79.09 38.15 -78.79 38.38 

2 -76.43 36.78 -79.24 37.82 

3 -78.69 37.18 -80.63 37.23 

4 -77.01 37.82 -81.69 37.04 

5 -79.22 37.91 -81.79 37.29 

6 -78.00 39.12 -80.17 36.88 

7 -77.31 38.59 -77.03 37.12 

8 -76.16 36.82 -79.43 37.56 

9 -76.42 37.67 -79.93 38.05 

10 -78.29 38.00 -79.54 37.49 

11 -76.70 37.07 -79.07 37.86 

12 -77.36 37.74 -78.72 36.73 

13 -78.92 38.15 -77.83 37.06 

14 -77.61 37.06 -78.94 37.94 

15 -77.52 36.68 -79.77 38.24 

16 -80.13 37.10 -79.33 37.65 

17 -76.71 37.28 -80.33 37.39 

18 -79.52 37.34 -78.17 38.71 

19 -80.24 37.21 -82.85 36.92 

20 -80.21 36.74 -78.7 36.85 
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Table D.14. Potential additional locations for RWIS stations in Wisconsin 

Station 

number 

Weather only Dual criteria 

Longitude Latitude Longitude Latitude 

1 -89.70 43.12 -89.94 42.62 

2 -91.46 44.57 -90.33 43.56 

3 -88.33 43.42 -90.67 43.19 

4 -89.18 42.75 -89.07 45.1 

5 -90.47 42.74 -90.86 43.14 

6 -88.01 43.66 -92.56 45.53 

7 -91.98 44.66 -90.39 46.37 

8 -88.26 44.62 -90.07 43.05 

9 -91.11 45.72 -92.24 45.36 

10 -89.88 44.34 -90.12 45.42 

11 -89.65 44.84 -91.81 44.69 

12 -90.25 44.02 -92.27 45.64 

13 -88.70 43.81 -90.71 43.83 

14 -88.88 43.86 -90.34 43.17 

15 -90.61 43.34 -88.57 44.6 

16 -90.04 43.42 -89.94 42.83 

17 -89.91 43.71 -87.92 45.75 

18 -92.00 45.64 -91.68 44.41 

19 -88.15 42.69 -88.77 45.38 

20 -92.38 45.72 -89.41 45.97 
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